Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Shishmariya
26.01.2020 20:18 •
Алгебра
Найти все значения а, при которых один корень уравнения 2ах^2 - 2x - 3a - 2 = 0 больше 1, а другой меньше 1.
Показать ответ
Ответ:
Балерина2017
02.10.2020 17:25
Во-первых, a =/= 0, потому что если a = 0, то
-2x - 2 = 0; x = -1 - всего 1 корень.
Решаем квадратное уравнение
2ax^2 - 2x - 3a - 2 = 0
D/4 = 1^2 - 2a(-3a - 2) = 1 + 6a^2 + 4a = 6a^2 + 4a + 1 > 0
Решаем это неравенство
D/4 = 2^2 - 6*1 = 4 - 6 < 0 - неравенство верно при любом а
{ x1 = (1 - √( 6a^2 + 4a + 1 )) / (2a) < 1
{ x2 = (1 + √( 6a^2 + 4a + 1 )) / (2a) > 1
Решаем эту систему
{ (1 - √( 6a^2 + 4a + 1 ) - 2a) / (2a) < 0
{ (1 + √( 6a^2 + 4a + 1 ) - 2a) / (2a) > 0
1) Если a < 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) > 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) < 0
Решений нет, потому что 1 - 2a + √(6a^2 + 4a + 1) > 1 - 2a - √(6a^2 + 4a + 1)
при любом а.
2) Если a > 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) < 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) > 0
Отделяем корень
{ √( 6a^2 + 4a + 1 ) > 1 - 2a
{ √( 6a^2 + 4a + 1 ) > 2a - 1
При возведении в квадрат получается 2 одинаковых неравенства
6a^2 + 4a + 1 > 4a^2 - 4a + 1
2a^2 + 8a > 0
2a(a + 4) > 0
a < -4 U a > 0
Но у нас условие: a > 0, поэтому
ответ: при любом a > 0
0,0
(0 оценок)
Популярные вопросы: Алгебра
masynchic
21.01.2020 14:52
40 , отмечу как лучший и кину ) 4 примера решить...
minnehanow
13.11.2021 19:52
Решить 2. значение выражения 6xy 5zw при некоторых значениях переменных равно 6. найдите значение выражения 1 6xy 5zw. при тех же значениях переменных...
синегривка2
05.02.2023 11:56
На исследование квадратичной функции 1. при каких значениях k уравнение имеет единственное решение? kx²-x+3=0 2. при каких значениях а уравнение 2x²-(a-1)х+(a+3)=0 имеет: - единственное...
madievazarina
08.07.2021 21:46
Найти область определения. y=4/x2+5x+6 y=корень 12-x-x2...
Vens12
05.02.2023 11:56
2a2b2 *(8a3-4a2b2-3ab2+5b3) решить...
Sera4erka
04.10.2021 11:08
Представьте число в стандартном виде 84000,0076542,7*10 4317*10-3...
Аня98788
09.02.2023 21:45
Известно, что [tex] \frac{1}{2} y 8[/tex]оцените значение выражений: 1. 1-y[tex]2. \frac{4}{1} + y[/tex]...
maga156
05.01.2022 18:28
Знайдіть відстань між точками к(8; -11) і м(2; -3)....
khalitovroman
10.02.2021 05:05
(15n-2)-(7n-26) кратно 8 при любом натуральном значении n...
33708
04.10.2022 21:11
Алгебра 11 класс. 4 номер, с решением...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
-2x - 2 = 0; x = -1 - всего 1 корень.
Решаем квадратное уравнение
2ax^2 - 2x - 3a - 2 = 0
D/4 = 1^2 - 2a(-3a - 2) = 1 + 6a^2 + 4a = 6a^2 + 4a + 1 > 0
Решаем это неравенство
D/4 = 2^2 - 6*1 = 4 - 6 < 0 - неравенство верно при любом а
{ x1 = (1 - √( 6a^2 + 4a + 1 )) / (2a) < 1
{ x2 = (1 + √( 6a^2 + 4a + 1 )) / (2a) > 1
Решаем эту систему
{ (1 - √( 6a^2 + 4a + 1 ) - 2a) / (2a) < 0
{ (1 + √( 6a^2 + 4a + 1 ) - 2a) / (2a) > 0
1) Если a < 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) > 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) < 0
Решений нет, потому что 1 - 2a + √(6a^2 + 4a + 1) > 1 - 2a - √(6a^2 + 4a + 1)
при любом а.
2) Если a > 0, то
{ 1 - 2a - √( 6a^2 + 4a + 1 ) < 0
{ 1 - 2a + √( 6a^2 + 4a + 1 ) > 0
Отделяем корень
{ √( 6a^2 + 4a + 1 ) > 1 - 2a
{ √( 6a^2 + 4a + 1 ) > 2a - 1
При возведении в квадрат получается 2 одинаковых неравенства
6a^2 + 4a + 1 > 4a^2 - 4a + 1
2a^2 + 8a > 0
2a(a + 4) > 0
a < -4 U a > 0
Но у нас условие: a > 0, поэтому
ответ: при любом a > 0