В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
зулик3
зулик3
26.03.2021 15:06 •  Алгебра

Найти все значения параметра а, при которых множество решений неравенства x(x-6)≤(a+3)(|x-3|-3) содержит число, равное сумме квадратов корней уравнения x^2-4x=1=0. в ответе запишите наименьшее целое значение параметра а.

Показать ответ
Ответ:
maksgolovakha228
maksgolovakha228
06.10.2020 22:10
Сначала найдем сумму квадратов корней уравнения
x^2 - 4x + 1 = 0
D/4 = 4 - 1 = 3
x1 = 2 - √3; x2 = 2 + √3
x1^2 + x2^2 = (2 - √3)(2 + √3) = 4 - 3 = 1
Получили задачу: Найти такие а, при которых множество решений неравенства содержит число 1.
x(x - 6) <= (a + 3)(|x-3| - 3)
1) Если x < 3, то |x - 3| = 3 - x
x(x - 6) <= (a + 3)(3 - x - 3) = (a + 3)(-x)
Если x < 0, то решение не содержит число 1.
Если x ∈ (0, 3), то решение может содержать число 1.
При этом x > 0, сокращаем уравнение на х, знак неравенства остается.
x - 6 <= -a - 3
x <= 3 - a
Если решение содержит число 1, то
3 - a >= 1
a <= 2

2) Если x > 3, то решение не содержит числа 1.
ответ: 2
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота