В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
сова154
сова154
01.08.2020 10:07 •  Алгебра

найти высоту и потенциальную энергию​

Показать ответ
Ответ:
alina067
alina067
01.12.2021 17:29

Дано неравенство: 6x² − x - 5 > 0.

Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.

Квадратное уравнение, решаем относительно x:

Ищем дискриминант:

D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;

Дискриминант больше 0, уравнение имеет 2 корня:

x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;

x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.

откуда x1 = 1 и x2 = -(5/6).

Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:

ОО⟶Х

-5/6 1

Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков

+ – +

ОО⟶Х

-5/6 1

Получаем: x < -5/6 или x > 1.

0,0(0 оценок)
Ответ:
rodion905
rodion905
01.12.2021 17:29

1. С графика квадратичной функции.

x² + 3x - 18 < 0.

Рассмотрим функцию у = х² + 3х - 18. Графиком этой функции является парабола, ветви которой направлены вверх.

Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение х² + 3х - 18 =0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -6 и 3.

Покажем схематически, как расположена парабола в координатной плоскости (см. рис.) Из рисунка видно, что функция принимает отрицательные значения, когда х∈(-6; 3). Следовательно, множеством решений неравенства x² + 3x - 18 < 0 является промежуток (-6; 3).

2. Методом интервалов.

Метод интервалов применяется в случае, когда левая часть нервенства имеет многочлена, а правая равна 0. В этом случае находят корни многочлена, располагают их в порядке возрастания, наносят их на числовую ось, а затем справа налево располагают знаки "+" и "-", чередуя их, если корень некратный, и сохраняя знак, если корень кратный.

x² + 3x - 18 < 0

Разложим на множители многочлен x² + 3x - 18, для чего решим квадратное уравнение x² + 3x - 18 = 0:

D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9

х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,

х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.

Значит, x² + 3x - 18 = (х - 3)(х + 6).

Отметим на координатной прямой точки -6 и 3 и укажем знаки многочлена на каждом из полученных интервалов (см. рис.).

Множество решений неравенства: х∈(-6; 3).

ответ:(-6; 3).



Решите неравенство используя график квадратичной функции и метод интервалов: x^2+3x-18< 0
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота