Получатся два прямоугольных треугольника, в каждом из которых данные отрезки d и m будут являться гипотенузами, их проекции d₁ и m₁ катетами, а расстояние между параллельными плоскостями h катет По условию d + m = 40 Пусть х - длина проекции d₁ (40 - m) - длина проекции m₁ Применяем теорему Пифагора для первого треугольника d² - d₁² = h² и для второго m² - m₁² = h² Правые части равны, приравняв левые части, получим уравнение 13² - x² = 37² - (40 - x)² 169 - x² = 1369 - 1600 + 80x - x² 80x = 400 x = 400 : 80 х = 5 см - длина первой проекции 40 - 5 = 35 см - длина второй проекции Ищем разность 35 - 5 = 30 см ответ: 30 см
Моторная лодка в первый день км по течению реки за 5ч, а во второй день она км против течения за 6ч. Найти собственную скорость лодки и скорость течения реки
х - собственная скорость лодки
у - скорость течения реки
х+у - скорость лодки по течению
х-у - скорость лодки против течения
Согласно условию задачи составляем систему уравнений:
120/(х+у)=5
72/(х-у)=6
Умножим первое уравнение на (х+у), второе на (х-у), избавимся от дроби:
120=5(х+у)
72=6(х-у)
5(х+у)=120
6(х-у)=72
5х+5у=120
6х-6у=72
Разделим первое уравнение на 5, второе на 6 для удобства вычислений:
х+у=24
х-у=12
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
По условию d + m = 40
Пусть
х - длина проекции d₁
(40 - m) - длина проекции m₁
Применяем теорему Пифагора для первого треугольника
d² - d₁² = h²
и для второго
m² - m₁² = h²
Правые части равны, приравняв левые части, получим уравнение
13² - x² = 37² - (40 - x)²
169 - x² = 1369 - 1600 + 80x - x²
80x = 400
x = 400 : 80
х = 5 см - длина первой проекции
40 - 5 = 35 см - длина второй проекции
Ищем разность
35 - 5 = 30 см
ответ: 30 см
18 (км/час) - собственная скорость лодки
6 (км/час) - скорость течения реки
Объяснение:
Моторная лодка в первый день км по течению реки за 5ч, а во второй день она км против течения за 6ч. Найти собственную скорость лодки и скорость течения реки
х - собственная скорость лодки
у - скорость течения реки
х+у - скорость лодки по течению
х-у - скорость лодки против течения
Согласно условию задачи составляем систему уравнений:
120/(х+у)=5
72/(х-у)=6
Умножим первое уравнение на (х+у), второе на (х-у), избавимся от дроби:
120=5(х+у)
72=6(х-у)
5(х+у)=120
6(х-у)=72
5х+5у=120
6х-6у=72
Разделим первое уравнение на 5, второе на 6 для удобства вычислений:
х+у=24
х-у=12
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=24-у
24-у-у=12
-2у=12-24
-2у= -12
у= -12/-2
у=6 (км/час) - скорость течения реки
х=24-у
х=24-6
х=18 (км/час) - собственная скорость лодки
Проверка:
120:24=5 (часов) по течению
72:12=6 (часов) против течения, всё верно.