Для решения задачи возьмем первоначальное количество яблонь на 1 участке за х. Если с 1 участка пересадить 1 яблоню на второй, то количество яблонь на первом выразим как (х – 1) яблонь. Тогда количество яблонь на 2 участке можно выразить как 3(х – 1). Известно, что всего на двух участках было 84 яблони. Составим и решим уравнение: (х – 1) + 3(х - 1) = 84 х – 1 + 3х – 3 = 84 4х = 84 + 3 + 1 = 88 х = 22 Значит 22 яблони было первоначально на первом участке. Найдем сколько было первоначально яблонь на втором участке: 84 – 22 = 62 Произведем проверку: Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони. 21 + 63 = 84 ответ: На втором участке изначально было 62 яблони.
(х – 1) + 3(х - 1) = 84
х – 1 + 3х – 3 = 84
4х = 84 + 3 + 1 = 88
х = 22
Значит 22 яблони было первоначально на первом участке.
Найдем сколько было первоначально яблонь на втором участке:
84 – 22 = 62
Произведем проверку:
Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони.
21 + 63 = 84
ответ: На втором участке изначально было 62 яблони.
2) ОДЗ функции :
Т.к. - парабола ветвями вверх, то неравенство выполняется для любых х.
3) Т.к. под корнем стоит квадратичная функция, определим как ведет себя парабола при указанных в п.1 значениях х:
вершина параболы:
При х∈(-4;1) - убывает
При х∈(1;6) - возрастает
4) Значит минимальное значение функция принимает в вершине параболы х=1:
5) Максимальное значение функция f(x) примет либо в х=-4, либо в х=6:
ответ: f(x)∈(2/√29; 1) при x∈(-4;6)
P.S. В доказательство правильности решения прикрепляю график функции