4x³+1/x³+2=((2x³)²+2x³+1)/x³. Если обозначить t=2x³, то количество подобных слагаемых в исходном выражении равно количеству слагаемых в многочлене 4032 степени (t²+t+1)²⁰¹⁶. Рассмотрим процесс раскрытия скобок в этом произведении. Возьмем произвольное слагаемое t^k, где k≤4032. Покажем, что коэффициент при нем не 0. Если k=2m, то m≤2016, и значит это слагаемое можно получить, перемножая t² из m скобок (t²+t+1), а из остальных скобок взяв 1. Если k=2m+1, то m≤2015 и значит t^k можно получить, взяв t² из m скобок, взяв t из одной скобки, а из остальных скобок взяв 1. Т.к. все получающиеся коэффициенты положительны, то при каждом слагаемом t^k будет ненулевой коэффициент, а значит общее количество слагаемых равно степени многочлена плюс 1, т.е. ответ 4033.
Если вставить число 5, то получится число Y=a5b=100a+50+b
При этом - арифметическая прогрессия. Тогда:
Если вставить число 3, то получится число Z=a3b=100a+30+b
При этом - геометрическая прогрессия. Тогда:
Запишем систему уравнений:
9, 5, 1 - арифметическая прогрессия, d=5-9=1-5=-4
9, 3, 1 - геометрическая прогрессия, q=3/9=1/3
Искомое 2-значное число 91
1, 5, 9 - арифметическая прогрессия, d=5-1=9-5=4
1, 3, 9 - не является геометрической прогрессией, q=3/1=9/3
Искомое 2-значное число 19
ответ: 91 и 19