Область определения функции - это множество значений переменной х. В нашем случае - под знаком корня должно стоять выражение, принимающее неотрицательные значения, т.е. область определения - это решение неравенства х² - 9 ≥ 0. Решим неравенство методом интервалов.
Рассмотрим функцию у = х² - 9 и найдем те значения х, при которых функция у = х² - 9 принимает неотрицательные значения. Найдем ее нули:
х² - 9 = 0,
(х - 3)(х + 3) = 0,
х - 3 = 0 или х + 3 = 0,
х₁ = 3, х₂ = -3.
Отметим на координатной прямой интервалы, ограниченные найденными нулями:
+ - +
||
-3 3
х ∈ (-∞; -3] ∪ [3; +∞), т.е. область определения функции у = √(х² - 9) - это объединение промежутков (-∞; -3] ∪ [3; +∞).
1)-- (cos6x + 4cos3x + 3) - -- (cos6x - 4cos3x + 3) =
8 8
1 1
= ( cos6x + 4cos3x + 3 - cos6x + 4cos3x - 3) = --- 8cos3x = cos3x
8 8
а сорь, там равно 1/2
Тогда, cos3x = 1/2
3x = +arccos1/2 + 2pk
3x = - arccos1/2 + 2pk
3x = pi/3 + 2pk
x1 = pi/9 + 2pk/3
x2 = -pi/9 + 2pk/3
у = √(х² - 9)
Область определения функции - это множество значений переменной х. В нашем случае - под знаком корня должно стоять выражение, принимающее неотрицательные значения, т.е. область определения - это решение неравенства х² - 9 ≥ 0. Решим неравенство методом интервалов.
Рассмотрим функцию у = х² - 9 и найдем те значения х, при которых функция у = х² - 9 принимает неотрицательные значения. Найдем ее нули:
х² - 9 = 0,
(х - 3)(х + 3) = 0,
х - 3 = 0 или х + 3 = 0,
х₁ = 3, х₂ = -3.
Отметим на координатной прямой интервалы, ограниченные найденными нулями:
+ - +
||
-3 3
х ∈ (-∞; -3] ∪ [3; +∞), т.е. область определения функции у = √(х² - 9) - это объединение промежутков (-∞; -3] ∪ [3; +∞).
ответ: (-∞; -3] ∪ [3; +∞).