\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
Выразим y:
(2x+3)^{2} = -7y
4x^{2}+12x+9 = -7y
y = \frac{4x^{2}+12x+9}{-7}
Решим систему:
\left \{ {{(2x+3)^{2} =-7y | } \atop {(2x+5)=-7y | *(-1)}} \right.
\left \{ {{(2x+3)^{2} =-7y} \atop {-(2x+5)=7y}} \right.
Суммируем:
(2x+3)^{2} -(3x+5)^{2} = 0
Раскроем скобки:
(4x^{2} +12x+9) -(9x^{2}+30x+25) = 0
4x^{2} +12x+9 -9x^{2}-30x-25
-5x^{2}-18x-16 = 0 (*-1)
5x^{2}+18x+16 = 0
D = 4
\sqrt{D} = 2
x_{1} = -2 x_{-1.6}
Найдем y подставив в формулу: y = \frac{4x^{2}+12x+9}{-7}
y_{1} = \frac{4(-2)^{2}+12(-2)+9}{-7} = -\frac{1}{7}
y_{2} = \frac{4(-1.6)^{2}+12(-1.6)+9}{-7} = -\frac{1}{175}
ответ: (-2; -\frac{1}{7}); (-1.6; -\frac{1}{175}).
1 печник может сложить всю печь за x часов, по 1/x части в час.
2 печник может сложить всю печь за y часов, по 1/y части в час.
Вместе они сделают печь за 12 часов, по 1/12 части в час.
1/x + 1/y = 1/12
Если 1 печник проработает 2 ч, а 2 - 3 часа, то они сделают 1/5 часть.
2/x + 3/y = 1/5
Делаем замену 1/x = a, 1/y = b
{ a + b = 1/12
{ 2a + 3b = 1/5
Умножаем 1 уравнение на 3, а 2 уравнение на -1
{ 3a + 3b = 3/12 = 1/4
{ -2a - 3b = -1/5
Складываем уравнения
3a - 2a = 1/4 - 1/5 = 5/20 - 4/20
a = 1/x = 1/20; x = 20
b = 1/y = 1/12 - a = 1/12 - 1/20 = 5/60 - 3/60 = 2/60 = 1/30; y = 30
ответ: 1 печник сложит печь за 20 часов, а 2 печник за 30 часов.
\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
Выразим y:
(2x+3)^{2} = -7y
4x^{2}+12x+9 = -7y
y = \frac{4x^{2}+12x+9}{-7}
Решим систему:
\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
\left \{ {{(2x+3)^{2} =-7y | } \atop {(2x+5)=-7y | *(-1)}} \right.
\left \{ {{(2x+3)^{2} =-7y} \atop {-(2x+5)=7y}} \right.
Суммируем:
(2x+3)^{2} -(3x+5)^{2} = 0
Раскроем скобки:
(4x^{2} +12x+9) -(9x^{2}+30x+25) = 0
4x^{2} +12x+9 -9x^{2}-30x-25
-5x^{2}-18x-16 = 0 (*-1)
5x^{2}+18x+16 = 0
D = 4
\sqrt{D} = 2
x_{1} = -2 x_{-1.6}
Найдем y подставив в формулу: y = \frac{4x^{2}+12x+9}{-7}
y_{1} = \frac{4(-2)^{2}+12(-2)+9}{-7} = -\frac{1}{7}
y_{2} = \frac{4(-1.6)^{2}+12(-1.6)+9}{-7} = -\frac{1}{175}
ответ: (-2; -\frac{1}{7}); (-1.6; -\frac{1}{175}).
1 печник может сложить всю печь за x часов, по 1/x части в час.
2 печник может сложить всю печь за y часов, по 1/y части в час.
Вместе они сделают печь за 12 часов, по 1/12 части в час.
1/x + 1/y = 1/12
Если 1 печник проработает 2 ч, а 2 - 3 часа, то они сделают 1/5 часть.
2/x + 3/y = 1/5
Делаем замену 1/x = a, 1/y = b
{ a + b = 1/12
{ 2a + 3b = 1/5
Умножаем 1 уравнение на 3, а 2 уравнение на -1
{ 3a + 3b = 3/12 = 1/4
{ -2a - 3b = -1/5
Складываем уравнения
3a - 2a = 1/4 - 1/5 = 5/20 - 4/20
a = 1/x = 1/20; x = 20
b = 1/y = 1/12 - a = 1/12 - 1/20 = 5/60 - 3/60 = 2/60 = 1/30; y = 30
ответ: 1 печник сложит печь за 20 часов, а 2 печник за 30 часов.