Достроим треугольник DAM до параллелограмма AMED. ME || AD || BC Поэтому точка E лежит в плоскости ADM и лежит в плоскости BCM. Следовательно ME и есть прямая пересечения ADM и BCM ME=BC и ME || BC, следовательно BMEC параллелограмм угол MBC прямой, BMEC -- прямоугольник, следовательно ME перпендикулярно BM. угол BAD прямой, следовательно, MAD -- тоже прямой (теорема о 3 перпендикулярах) , следовательно AMED -- прямоугольник, следовательно, ME перпендикулярно AM. ME перпендикулярно AM и BM, следовательно, ME перпендикулярно плоскости ABM.
ME || AD || BC
Поэтому точка E лежит в плоскости ADM и лежит в плоскости BCM.
Следовательно ME и есть прямая пересечения ADM и BCM
ME=BC и ME || BC, следовательно BMEC параллелограмм
угол MBC прямой, BMEC -- прямоугольник, следовательно ME перпендикулярно BM.
угол BAD прямой, следовательно, MAD -- тоже прямой (теорема о 3 перпендикулярах) , следовательно AMED -- прямоугольник, следовательно, ME перпендикулярно AM.
ME перпендикулярно AM и BM, следовательно, ME перпендикулярно плоскости ABM.
2^(2x) - 33*(2^x) + 32 ≤ 0
a) 2^x = 32
2^x = 2^5
x₁ = 5
b) 2^x = 1
2^x = 2^0
x₂ = 0
x ∈ [0 ; 5]
ответ: x ∈ [0 ; 5]
2) 2log₉ (4x²+1) ≤ log₃ (3x²+4x+1)
ОДЗ: 4x² + 1> 0 всегда
3x²+4x+1 > 0
D = 16 - 4*3*1 = 4
x₁ = (-4 - 2)/6
x₁ = - 1
x₂ = (-4 + 2)/6
x₂ = -1/3
x ∈ (- ∞ ; -1) (- 1/3 ; + ∞)
log₃ (4x² + 1) ≤ log₃ (3x² + 4x + 1)
3 > 1
4x² + 1 ≤ 3x² + 4x + 1
4x² + 1 - 3x² - 4x - 1 ≤ 0
x² - 4x ≤ 0
x(x - 4) ≤ 0
x₁ = 0
x - 4 = 0
x₂ = 4
x ∈ [0 ;4] удовлетворяет ОДЗ
ответ: x ∈ [0 ;4]