Для удобства объем бассейна обозначим v м³, х-время за которое 1 кран заполнит, у-время за которое 2 кран заполнит. запуск первого крана: он работает х/3 времени, и заполнит (v/у)*(х/3) второй аналогично : (v/х)*(у/3) 1) + =13/18v + =13/18 =13/18 39ху=х²+у² 39xy=(x+y)²-2xy 41xy=(x+y)² 2) ((v/у)+(v/х))*3 часа 36 минут=v *3.6=1 (x+y)*36=10*xy 3) q=x+y w=xy получили систему q²=41*36*q/10 q=41*36/10=147,6 10w=36*q ⇒w=3,6*q=531.36 получили систему x=147,6-y (147,6-y)*y=531.36 147,6y-y²=531.46 y²-147,6*y-531.46=0
Дано уравнение (3х² - 19х + 20)(2cosx + 3)=0 Произведение может быть равно 0, если нулю равны один или все множители. Приравниваем 0 первый множитель: 3х² - 19х + 20 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-19)^2-4*3*20=361-4*3*20=361-12*20=361-240=121;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√121-(-19))/(2*3)=(11-(-19))/(2*3)=(11+19)/(2*3)=30/(2*3)=30/6 = 5; x₂=(-√121-(-19))/(2*3)=(-11-(-19))/(2*3)=(-11+19)/(2*3)=8/(2*3)=8/6 = 4/3 ≈ 1,33333.
Приравниваем 0 второй множитель: 2cosx + 3=0, cosx = -3/2 > |1| не имеет решения. Корни заданного уравнения: х₁ = 5, х₂ = 4/3.
ответ: с учётом заданного промежутка [3π/2;3π], который соответствует [4.712389; 9.424778] корень один: х₁ = 5.
Произведение может быть равно 0, если нулю равны один или все множители.
Приравниваем 0 первый множитель:
3х² - 19х + 20 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-19)^2-4*3*20=361-4*3*20=361-12*20=361-240=121;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√121-(-19))/(2*3)=(11-(-19))/(2*3)=(11+19)/(2*3)=30/(2*3)=30/6 = 5; x₂=(-√121-(-19))/(2*3)=(-11-(-19))/(2*3)=(-11+19)/(2*3)=8/(2*3)=8/6 = 4/3 ≈ 1,33333.
Приравниваем 0 второй множитель:
2cosx + 3=0,
cosx = -3/2 > |1| не имеет решения.
Корни заданного уравнения: х₁ = 5, х₂ = 4/3.
ответ: с учётом заданного промежутка [3π/2;3π], который соответствует
[4.712389; 9.424778] корень один: х₁ = 5.