Из первого уравнения вырим Х: Х=(-4-y-z)/3 Подставим Х который выразил из первого уравнение во второе и после этого выразим У: -4-y-z+5y+6z=36. 4y+5z=40. y=(40-5z)/4 Теперь выраженый Х и У подставим в трерье уравнение и найдем z: (-4-(40-5z)/4-z)/3-(40-5z)-2z=-19. -4/3-10/3+5z/12-z/3-40+5z-2z=-19. 5z/12-z/3+5z-2z=-19+4/3+10/3+40. 35z/12=77/3. Z=77×12/(3×35). Z=8,8 Теперь известный z подставим в уравнение где выражен У: У=(40-5×8,8)/4=-1 Теперь известный У и Z подставим в первое уравнение где выражен Х: х=(-4+1-8.8)/3=-3,933~-4 ответ х=-4, у=-1, z=8,8
2) находим значение этих производных в точке М: du/dx(2;-2)=2/(4+4)=1/4=0,25; du/dy(2;-2)=2/(4+4)=1/4=0,25.
3) Уравнение x²+y²=4x, или x²-4x+y²=(x-2)²+y²-4=0, или (x-2)²+y²=4, очевидно, есть уравнение окружности с центром в точке М1(2;0) и радиусом r=√4=2.
4) Обозначим F(x,y)=x²-4x+y². Найдём dF/dx и dF/dy. dF/dx=2x-4, dF/dy=2y.
5) Найдём значения этих производных в точке М. dF/dx(2;-2)=0, dF/dy(2;-2)=-4. Эти значения являются координатами нормального вектора, проходящего через точку М, то есть вектора, перпендикулярного вектору, направленному по касательной к окружности в данной точке М. Из бесчисленного множества последних выберем нормированный. Пусть этот вектор имеет координаты Ax и Ay. Тогда, так как векторы перпендикулярны, их скалярное произведение равно 0. Но последнее можно записать в виде 0*Ax+(-4)*Ay=0, откуда Ay=0. С другой стороны, скалярное произведение Ax*Ax+Ay*Ay=(Ax)²+(Ay)²=1, откуда Ax=+1 и Ax=-1.
6) Производная по направлению в точке М вычисляется по формуле du/dl=du/dx(2;-2)*cos α +du/dy(2;-2)*cos β, где cos α=Ax/модуль А, cos β=Ay/модуль А. Но модуль А=1, и тогда cos α=1 либо cos α=-1, cos β=0. А тогда du/dl=0,25*1=0,25, либо du/dl=-0,25. ответ: 0,25 либо -0,25.
du/dx=(-y/x²)*1/(1+y²/x²)=-y/(x²+y²), du/dy=(1/x)*x²/(x²+y²)=x/(x²+y²)
2) находим значение этих производных в точке М:
du/dx(2;-2)=2/(4+4)=1/4=0,25; du/dy(2;-2)=2/(4+4)=1/4=0,25.
3) Уравнение x²+y²=4x, или x²-4x+y²=(x-2)²+y²-4=0, или (x-2)²+y²=4, очевидно, есть уравнение окружности с центром в точке М1(2;0) и радиусом r=√4=2.
4) Обозначим F(x,y)=x²-4x+y². Найдём dF/dx и dF/dy.
dF/dx=2x-4, dF/dy=2y.
5) Найдём значения этих производных в точке М.
dF/dx(2;-2)=0, dF/dy(2;-2)=-4. Эти значения являются координатами нормального вектора, проходящего через точку М, то есть вектора, перпендикулярного вектору, направленному по касательной к окружности в данной точке М. Из бесчисленного множества последних выберем нормированный. Пусть этот вектор имеет координаты Ax и Ay. Тогда, так как векторы перпендикулярны, их скалярное произведение равно 0. Но последнее можно записать в виде 0*Ax+(-4)*Ay=0, откуда Ay=0. С другой стороны, скалярное произведение Ax*Ax+Ay*Ay=(Ax)²+(Ay)²=1, откуда Ax=+1 и Ax=-1.
6) Производная по направлению в точке М вычисляется по формуле
du/dl=du/dx(2;-2)*cos α +du/dy(2;-2)*cos β, где cos α=Ax/модуль А, cos β=Ay/модуль А. Но модуль А=1, и тогда cos α=1 либо cos α=-1, cos β=0. А тогда du/dl=0,25*1=0,25, либо du/dl=-0,25. ответ: 0,25 либо -0,25.