Задача. Сколько действительных корней имеет уравнение
Укажите интервал, которому принадлежит наименьший корень:
ответ запишите в виде: где — число корней, — номер промежутка, которому принадлежит наименьший корень.
Решение. Вынесем общий множитель за скобки:
Произведение множителей равно нулю тогда, когда хотя бы один из них равен нулю:
Видя последнее уравнение, понимаем, что искать все его корни не нужно. Этого и не требуют в задании.
Рассмотрим функцию
1) Область определения:
2) Исследуем данную функцию на четность:
Функция не обладает свойством четности. Она ни четная, ни нечетная.
3) Определим нули функции.
3.1. Пересечение с осью
Невозможно дать точный ответ.
3.2. Пересечение с осью
Значит, — точка пересечения с осью
4) Найдем производную функции:
5) Определим критические точки функции, приравняв производную к нулю:
Определим точки экстремума и экстремумы функции:
Итак:
6) Изобразим схематически график функции, строго соблюдая все найденные точки, монотонность функции и симметрию линий около критических точек (см. вложение).
Выводы. Как видно из графика, из уравнения имеем три действительных корня, наименьший из которых находится в интервале Таким образом, уравнение имеет четыре действительных корня.
28/(х+2) ч - время, затраченное катером по течению
12/(х-2) ч - время, затраченное катером против течения
Составим уравнение и решим
28/(x+2) + 12/(x-2) = 3.2
28(x-2) + 12(x+2) = 3.2(x²-4)
28x - 56 + 12x + 24 = 3.2x² - 12.8
3.2x² - 40x +19.2 = 0 |:8
0.4x² - 5x + 2.4 = 0
4x² - 50x + 24 = 0
D = 2500 - 384 = 2116; √D = 46
x1 = (50 + 46)/8 = 12 км/ч - скорость катера в стоячей воде
x2 = (50-46)/8 = 1/2 км/ч - не удовлетворяет заданному условию
ответ: 12 км/ч.
Задача. Сколько действительных корней имеет уравнение
Укажите интервал, которому принадлежит наименьший корень:
ответ запишите в виде: где — число корней, — номер промежутка, которому принадлежит наименьший корень.
Решение. Вынесем общий множитель за скобки:
Произведение множителей равно нулю тогда, когда хотя бы один из них равен нулю:
Видя последнее уравнение, понимаем, что искать все его корни не нужно. Этого и не требуют в задании.
Рассмотрим функцию
1) Область определения:
2) Исследуем данную функцию на четность:
Функция не обладает свойством четности. Она ни четная, ни нечетная.
3) Определим нули функции.
3.1. Пересечение с осью
Невозможно дать точный ответ.
3.2. Пересечение с осью
Значит, — точка пересечения с осью
4) Найдем производную функции:
5) Определим критические точки функции, приравняв производную к нулю:
Определим точки экстремума и экстремумы функции:
Итак:
6) Изобразим схематически график функции, строго соблюдая все найденные точки, монотонность функции и симметрию линий около критических точек (см. вложение).
Выводы. Как видно из графика, из уравнения имеем три действительных корня, наименьший из которых находится в интервале Таким образом, уравнение имеет четыре действительных корня.
ответ: