Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
1.
104° - тупой угол, только один в треугольнике.
180°-104°=76° - сумма двух других углов. они равны, т.к. треугольниу равнобедренный.
76°:2=38° - углы при основании равнобедренного треугольника.
2.
а) Сумма острых углов прямоугольного треугольника равна 90°.
90-30=60° - величина второго угла
Т.к. EF - биссектриса, то
60°:2=30° - ∠DEF
ED - основание ΔDEF, ∠DEF=∠EDF, EF=DF, следовательно, треугольник равнобедренный.
б) СF<DF
3.
х см - длина одной стороны
х+17 см - длина другой стороны.
Р=77 см
Примем большую сторону за основание.
х+х+х+17=77
3х=77-17
3х=60
х=20(см) - длина равных сторон
20+17=37(см) - длина основания
Теперь примем за основание меньшую сторону.
х+2*(х+17)=77
х+2х+34=77
3х=43
х≈14,3(см) - длина основания
14,3+17=31,3(см) - длина каждой из двух других сторон.