Вот накалякал. Разбирайся :)
xy/(x+y) = 5xz/(x+z) = 7yz/(y+z) = 9
xy = 5x + 5yxz = 7x + 7zyz = 9y + 9z
x(y-5) = 5yx = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z5yz = 35y + 7z * (y-5)5yz = 35y + 7yz - 35z2yz + 35y = 35zy(2z + 35) = 35zy = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z35z^2 = 315z + 9z*(2z + 35)35z^2 = 315z + 18z^2 + 315z17z^2 = 630zz=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
Имеем уравнение вида
f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает наименьшее значение, равное 1при х=2.
х=2- единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.
О т в е т. х=2
б)cos(cosx)=1
cos x=2πn, n∈ Z
Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1, n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.
Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.
О т в е т. x=(π/2) + πk, k∈Z.