С самого рождения демонстрировал необыкновенную физическую силу и храбрость, но при этом из-за враждебности Геры должен был подчиняться своему родственнику Еврисфею. В юности Геракл обеспечил родному городу победу над Эргином. В припадке безумия он убил собственных сыновей, а потому был вынужден пойти на службу к Еврисфею. По приказу последнего Геракл совершил двенадцать подвигов: победил немейского льва и лернейскую гидру, поймал керинейскую лань и эриманфского вепря, убил стимфалийских птиц, очистил авгиевы конюшни, укротил критского быка, завладел конями Диомеда, поясом Ипполиты, коровами Гериона, привёл к Еврисфею Цербера из загробного мира и принёс яблоки Гесперид.
В задании дана функция у = x² + 4 * x - 5, которая на декартово координатной плоскости Оху представляется как парабола. Как известно, если коэффициент при x² имеет положительное значение (как в нашем случае; он равен 1), то ветви параболы направлены вверх и она имеет вертикальную ось симметрии. Требуется написать уравнение оси симметрии данной параболы. Нетрудно убедиться, что искомое уравнение имеет вид: х = р, где р – абсцисса вершины параболы.
Для того, чтобы выполнить требование задания, приведём формулу (точнее, координаты) вершины, в общем случае, для параболы у = а * x² + b * x + c, которая может быть представлена как (-b / (2 * a); -(b² - 4 * a * c) / (4 * a)). Итак, для нашей параболы абсцисса вершины равна -b / (2 * a) = -4 / (2 * 1) = (-4) / 2 = -2. Следовательно, искомое уравнение имеет вид: х = -2.
В задании дана функция у = x² + 4 * x - 5, которая на декартово координатной плоскости Оху представляется как парабола. Как известно, если коэффициент при x² имеет положительное значение (как в нашем случае; он равен 1), то ветви параболы направлены вверх и она имеет вертикальную ось симметрии. Требуется написать уравнение оси симметрии данной параболы. Нетрудно убедиться, что искомое уравнение имеет вид: х = р, где р – абсцисса вершины параболы.
Для того, чтобы выполнить требование задания, приведём формулу (точнее, координаты) вершины, в общем случае, для параболы у = а * x² + b * x + c, которая может быть представлена как (-b / (2 * a); -(b² - 4 * a * c) / (4 * a)). Итак, для нашей параболы абсцисса вершины равна -b / (2 * a) = -4 / (2 * 1) = (-4) / 2 = -2. Следовательно, искомое уравнение имеет вид: х = -2.
ответ: 0,5.ответ:
Объяснение: