Решаем методом интервалов (чертим координатную прямую; отмечаем точки -2, 0, 2, выбивая 0, и справа налево рассставляем + и - чередуя на каждом интервале).
Т.к. по условию неравенство должно быть больше или равно 0, то берем те интервалы, где у нас +. Соответсвенно область определения функции: D. [-2;0)U[2;+бесконечно)
Т.к. все выражение находится под корнем, значит оно должно быть больше нуля и зменатель не должен быть равен нулю, т.е.:
(х^3-4х)/х >=0
(>= означает больше или равен 0)
Нули числителя: х(х^2-4)=0, значит х=0, х=2, х=-2.
Нули знаменателя: х=0
Решаем методом интервалов (чертим координатную прямую; отмечаем точки -2, 0, 2, выбивая 0, и справа налево рассставляем + и - чередуя на каждом интервале).
Т.к. по условию неравенство должно быть больше или равно 0, то берем те интервалы, где у нас +.
Соответсвенно область определения функции: D. [-2;0)U[2;+бесконечно)
По вертикали:
1. Произведение, состоящее из одинаковых множителей (степень) .
2. Какова степень одночлена 7а3b4с (восьмая) .
4. Показатель степени, который обычно не пишут (единица)
5. Слагаемые, отличающиеся только коэффициентами (подобные) .
6. “А ну-ка, отними! ” наоборот (сложение) .
7. Какова степень многочлена 2а6 + а – 1 – 3а4 + а7?
9. Число, при подстановке которого в уравнение, получается верное равенство (корень) .
10. Раздел математики (алгебра) .
По горизонтали:
3. Числовой множитель, стоящий перед буквенным выражением (коэффициент) .
8. Произведение чисел, переменных и степеней переменных (одночлен) .
11. Сумма одночленов (многочлен).