Не выполняя построения графика функций y=-2x²+4x-3.найдите значение аргумента при следующих значениях функций -3. если функция =-3 то значение аргумента (вписать меньший корень) если функция =-3 то значение аршумента (вписать больший корень)
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
9,90,99
Объяснение:
Сумма бесконечно убывающей геометрической прогрессии:
Есть правило: Бесконечная периодическая десятичная дробь равна обыкновенной дроби, в числителе которой разность между всем числом после запятой и числом после запятой до периода, а знаменатель состоит из «девяток» и «нулей», причем, «девяток» столько, сколько цифр в периоде, а «нулей» столько, сколько цифр после запятой до периода.
В первом примере
1) 0, (3). В числителе обыкновенной дроби запишем разность между всем числом после запятой (3) и числом после запятой до периода дроби (0). В периоде одна цифра, а после запятой до периода ни одной, поэтому знаменатель будет состоять из одной девятки (9).
0, 2(5). В числителе обыкновенной дроби запишем разность между всем числом после запятой (25) и числом после запятой до периода дроби (2). В периоде одна цифра, а после запятой до периода одна, поэтому знаменатель будет состоять из одной девятки и одного нуля (90).
7,(36)В числителе обыкновенной дроби запишем разность между всем числом после запятой (36) и числом после запятой до периода дроби (0). В периоде две цифры, а после запятой до периода ни одной, поэтому знаменатель будет состоять из двух девяток (99).