В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
samsung4652534832
samsung4652534832
19.04.2022 02:53 •  Алгебра

Не выполняя построения графика функций y=-2x²+4x-3.найдите значение аргумента при следующих значениях функций -3. если функция =-3 то значение аргумента (вписать меньший корень)
если функция =-3 то значение аршумента (вписать больший корень)​

Показать ответ
Ответ:
Anna9411
Anna9411
19.02.2021 23:27
Дано:(An)-арифметическая прогрессия
A4=9
A9=-6
Sn=54
Найти:n
Решение:        
   A1+An   
Sn= *n       
        2
    {A4=A1+3d
     {A9=A1+8d    {A1+3d=9
{A1+8d=-6  
{A1=9-3d
{9-3d+8d=-6 
5d=-15
d=-3
A1=18        
   18+An 
Sn= *n          
        2          
       18+An
 54= *n           
            2  
 An=A1+(n-1)d
An=18+(n-1)*-3
18+18+(n-1)*-3
  *n=54      
        2
 решаем 
n1=4 n2=9           18+9             27*4
                   S4= *4==27*2=54           
                           2                2       
       18-6                  12
 S9= * 9=*9=6*9=54
0,0(0 оценок)
Ответ:
tatianaradoslav
tatianaradoslav
19.02.2021 23:27
Рассмотрим функцию
    f(x,y,z)=x^2+y^2-xz-yz
Наша функция задана в неявном виде, то частные производные функции вычисляются по формулам:
\dfrac{\partial z}{\partial x} = -\dfrac{ \frac{\partial f}{\partial x} }{ \frac{\partial f}{\partial z} } =- \dfrac{2x-z}{-x-y}

\dfrac{\partial z}{\partial y} = -\dfrac{ \frac{\partial f}{\partial y} }{ \frac{\partial f}{\partial z} } =- \dfrac{2y-z}{-x-y}
Вычислим значение частных производных в точке M_0 с координатами (x_0;y_0;z_0).
f'_x(x_0;y_0;z_0)= \dfrac{2x_0-z_0}{x_0+y_0} \\ \\ f'_y(x_0;y_0;z_0)= \dfrac{2y_0-z_0}{x_0+y_0}
Запишем уравнение касательной плоскости к поверхности в точке M_0:
z-z_0=f'_x(x_0;y_0;z_0)(x-x_0)+f'_y(x_0;y_0;z_0)(y-y_0) - уравнение касательной в общем виде.

\boxed{z-z_0= \dfrac{2x_0-z_0}{x_0+y_0} \cdot (x-x_0)+ \dfrac{2y_0-z_0}{x_0+y_0} \cdot(y-y_0)} - уравнение касательной плоскости к поверхности в точке M_0 с координатами (x_0;y_0;z_0).

Уравнение нормали в общем виде:
      \dfrac{x-x_0}{f'_x(x_0;y_0;z_0)} = \dfrac{y-y_0}{f'_y(x_0;y_0;z_0)} = \dfrac{z-z_0}{-1}
Пользуясь этой формулой, имеем каноническое уравнение нормали к поверхности в точке M_0:

\boxed{\dfrac{(x-x_0)(x_0+y_0)}{2x_0-z_0} = \dfrac{(y-y_0)(x_0+y_0)}{2y_0-z_0} = \dfrac{z-z_0}{-1}} - каноническое уравнение нормали к поверхности в точке M_0 с координатами (x_0;y_0;z_0).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота