Если прямая перпендикулярно плоскости, то ее направляющий вектор является нормальным вектором плоскости.
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C). Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S(). По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
сos(4arctgx)=1/2
4arctgx=±arccos(1/2)+2πn, n∈Z;
4arctgx=±π/3+2πn, n∈Z;
arctgx=±π/12+πn/2, n∈Z;
x=tg(±π/12+πn/2), n∈Z;
cos((±π/12+πn/2))≠0
Поскольку арктангенс - это угол из (-π/2;π/2), при n =0 получим два ответа х=tg(±π/12).
tg(π/12)=(tg(π/4-π/6))=(1 -√3/3)/ (1+√3/3)=
(3-√3)/(3+√3) = (3-√3)²/(3²-(√3)² ) =(12-2√3)/(9-3)=2-√3/3
tg(-π/12)=-tg(π/12)=-(2-√3/3)=-2+√3/3
При n=1 х=tg(±π/12+π/2), указанному промежутку удовлетворяет tg(5π/12)=(tg(π/4+π/6))=(1 +√3/3)/ (1-√3/3)=
(3+√3)/(3-√3) = (3+√3)²/(3²-(√3)² ) =(12+2√3)/(9-3)=2+√3/3
При n=-1 х=tg(±π/12-π/2), указанному промежутку удовлетворяет tg(-5π/12)=-tg5π/12=-(2+√3/3 )=-2-√3/3
При n=2 х=tg(±π/12+π); и при n=-2 х=tg(±π/12-π), Корней нет. Остальные можно не проверять, они не войдут в промежуток
(-π/2;π/2).
ответ. х=±(2-√3/3); х=±(2+√3/3 )
1)Уравнение плоскости через нормальный вектор: , где A, B, C - координаты нормального вектора плоскости N(A,B,C).
Уравнение данной плоскости ⇒ N(2,-3,4).
2)Уравнение прямой через точку направляющий вектор: , где - координаты точки M(), через которую проходит прямая, - координаты направляющего вектора S().
По условию S() = N(A,B,C) ⇒ N(2,-3,4) = S(2,-3,4); M(1,-2,3).
3)Готовое уравнение прямой: