По формулам сокращенного умножения сумма кубов двух чисел равна:
a³ + b³ = (a + b) * (a² – a * b + b²),
где a² — квадрат первого числа, b — квадрат второго числа, a * b — произведение первого числа на второе. Таким образом, скобка (a² – a * b + b²) представляет собой неполный квадрат разности чисел a и b.
По формулам сокращенного умножения сумма кубов двух чисел равна:
a³ + b³ = (a + b) * (a² – a * b + b²),
где a² — квадрат первого числа, b — квадрат второго числа, a * b — произведение первого числа на второе. Таким образом, скобка (a² – a * b + b²) представляет собой неполный квадрат разности чисел a и b.
Подставим данные по условию числа в формулу:
3³ + 5³ = (3 + 5) * (3² – 3 * 5 + 5²) = 8 * (9 – 15 + 25) = 8 * 19 = 152.
Проверка:
3 * 3 * 3 + 5 * 5 * 5 = 152;
27 + 125 = 152;
152 = 152.
ответ: 3³ + 5³ = 152.
6 (кг) сена получала 1 корова.
9 (кг) сена получала 1 лошадь.
Объяснение:
14x+4y=120
5y−3=7x
14 коров и 4 лошадей ежедневно вместе получали 120 кг сена.
Сколько сена ежедневно скармливали каждой корове и каждой лошади, если 7 коров получали сена на 3 кг меньше, чем 5 лошадей?
Разделим первое уравнение на 4 для упрощения:
3,5х+у=30
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=30-3,5х
5y−3=7x
7х=5у-3
7х=5(30-3,5х)-3
7х=150-17,5х-3
7х+17,5х=147
24,5х=147
х=147/24,5
х=6 (кг) сена получала 1 корова.
у=30-3,5х
у=30-3,5*6
у=30-21
у=9 (кг) сена получала 1 лошадь.
Проверка:
14*6+4*9=120
9*5-3=6*7
45-3=42, верно.