Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Известно, что велосипедисты встретились через час и продолжили движение. Можно написать через формулу: Пусть х-скорость первого велосипедиста, а у- скорость второго велосипедиста, тогда час
Поскольку каждый велосипедист проехал расстояние от А до B, тогда каждый из них проехал S, а значит на все расстояние от A до В было затрачено часа.
После этого у них была стоянка 2 часа, и они выехали обратно, время до встречи нам уже известно 1 час, значит
2+2+1=5 часов времени они потратили до второй встречи
Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.
Такие уравнения решаются разложением левой части уравнения на множители.
\[a{x^2} + bx = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (ax + b) = 0\]
Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
\[x = 0;ax + b = 0\]
Второе уравнение — линейное. Решаем его:
\[ax = - b\_\_\_\left| {:a} \right.\]
\[x = - \frac{b}{a}\]
Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.
Примеры.
\[1){x^2} + 18x = 0\]
Общий множитель x выносим за скобки:
\[x \cdot (x + 18) = 0\]
ДОЛЖНО БЫТЬ ПРАВИЛЬНО
Можно написать через формулу:
Пусть х-скорость первого велосипедиста, а у- скорость второго велосипедиста, тогда
час
Поскольку каждый велосипедист проехал расстояние от А до B, тогда каждый из них проехал S, а значит на все расстояние от A до В было затрачено
часа.
После этого у них была стоянка 2 часа, и они выехали обратно, время до встречи нам уже известно 1 час, значит
2+2+1=5 часов времени они потратили до второй встречи
ответ 5 часов