Решение: Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так: х/у Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение: (х+1)/(у+1)=1/2 Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение: (х-1)/(у-1)=1/3 Решим получившуюся систему уравнений: (х+1)/(у+1)=1/2 (х-1)/(у-1)=1/3 (х+1)=1/2*(у+1) Приведём к общему знаменателю 2 (х-1)=1/3*(у-1) Приведём к общему знаменателю 3 2х+2=у+1 3х-3=у-1
2х-у=1-2 3х-у=-1+3
2х-у=-1 3х-у=2 Вычтем из первого уравнения второе уравнение: 2х-у-3х+у=-1-2 -х=-3 х=-3 : -1 х=3 Подставим значение х=3 в первое уравнение: 2*3 -у=-1 -у=-1-6 -у=-7 у=-7 : -1 у=7 Отсюда: х/у=3/7
2) х + 4,2 = 6,9 4) 0,3х = 15 6) (1/5)х + 4 = -2 1/3
х = 6,9 - 4,2 х = 15 : 0,3 (1/5)х = -2 1/3 - 4
х = 2,7 х = 50 (1/5)х = -6 1/3 = -19/3
х = -19/3 : 1/5
х = -19/3 · 5 = -95/3
х = -31 целая 2/3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8) 3(2х + 5) - 2(3х + 1) = 2 10) 5 1/6 : х = -31
6х + 15 - 6х - 2 = 2 31/6 : х = -31
6х - 6х = 2 + 2 - 15 х = 31/6 : (-31)
0х = -11 х = 31/6 · (-1/31)
х = ∅ (на 0 делить нельзя!) х = -1/6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
12) х² + 16 = 0
D = b² - 4ac = 0² - 4 · 1 · 16 = 0 - 64 = -64
Так как дискриминант меньше 0, то уравнение не имеет решений.
ответ: нет решений.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14) 6х² + х = 0
х · (6х + 1) = 0
х = 0 и 6х + 1 = 0
6х = -1
х = -1/6
ответ: (-1/6; 0).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
16) х² + 8х + 16 = 0
D = b² - 4ac = 8² - 4 · 1 · 16 = 64 - 64 = 0
Так как дискриминант равен 0, то квадратное уравнение имеет один корень
х = (-8)/(2·1) = -8/2 = -4
ответ: (-4).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
18) х² - 7х + 6 = 0
D = b² - 4ac = (-7)² - 4 · 1 · 6 = 49 - 24 = 25
√D = √25 = 5
х₁ = (7-5)/(2·1) = 2/2 = 1
х₂ = (7+5)/(2·1) = 12/2 = 6
ответ: (1; 6).
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20) (2х - 5)(х + 3) = 0
2х - 5 = 0 и х + 3 = 0
2х = 5 х = -3
х = 5 : 2
х = 2,5
ответ: (-3; 2,5).
Обозначим числитель дроби за (х), а знаменатель за (у), дробь выглядит так:
х/у
Прибавим к числителю и знаменателю данной дроби по (1), получим уравнение:
(х+1)/(у+1)=1/2
Вычтем из числителя и знаменателя дроби х/у по (1), получим уравнение:
(х-1)/(у-1)=1/3
Решим получившуюся систему уравнений:
(х+1)/(у+1)=1/2
(х-1)/(у-1)=1/3
(х+1)=1/2*(у+1) Приведём к общему знаменателю 2
(х-1)=1/3*(у-1) Приведём к общему знаменателю 3
2х+2=у+1
3х-3=у-1
2х-у=1-2
3х-у=-1+3
2х-у=-1
3х-у=2
Вычтем из первого уравнения второе уравнение:
2х-у-3х+у=-1-2
-х=-3
х=-3 : -1
х=3
Подставим значение х=3 в первое уравнение:
2*3 -у=-1
-у=-1-6
-у=-7
у=-7 : -1
у=7
Отсюда: х/у=3/7
ответ: Искомая дробь равна 3/7