7; -4
Объяснение:
Решение методом подбора корней:
Записываем исходное уравнение:
(х - 7)(х + 4) = 0
Подбираем х:
х1 = 7, х2 = -4
Решение через раскрытие скобок, теорему Виета, и дискриминант:
Раскрываем скобки:
х*х - 7x + 4x - 28 = 0
x^2 - 7x + 4x - 28 = 0
Приводим подобные:
x^2 - 3x - 28 = 0
1 под
Решаем через теорему Виета:
x1 + x2 = 3
x1*x2 = -28
Откуда:
x1 = 7, x2 = -4
2 под Решение через дискриминант
Ищем дискриминант:
D = b^2 - 4ac
D = (-3)^2 -4*1*(-28)
D = 9 - (-112)
D = 9 + 112 = 121
Находим корни уравнения:
В данном решении показано решения данного уравнения. (причем имеет 2 под
80 гривен - стоимость стола
12 гривен - стоимость стула
х грив. - стоимость одного стола
у грив. - стоимость одного стула
2х + 6у = 232 - первое уравнение
0,15х грив. - скидка 15%
х - 0,15х = 0,85х гривен - новая стоимость одного стола
0,2у грив. - скидка 20%
у + 0,2у = 0,8у гривен - новая стоимость одного стула
0,85х + 2*0,8у = 0,85х + 1,6у
0,85х + 1,6у = 87,2 - второе уравнение
Решаем систему уравнений
2х + 6у = 232
0,85х + 1,6у = 87,2
2х = 232 - 6у
х = 116 - 3у - определили значение Х из первого уравнения, теперь подставляем это значение Х во второе уравнение
0,85*(116 - 3у) + 1,6у = 87,2
98,6 - 2,55у + 1,6у = 87,2
98,6 - 0,95у = 87,2
0,95у = 98,6 - 87,2
0,95у = 11,4
у = 11,4 : 0,95
у = 12 (грив.) - стоимость одного стула
2х + 6*12 = 232
2х = 232 - 72
2х = 160
х = 160:2
х = 80 (грив.) - стоимость одного стола
7; -4
Объяснение:
Решение методом подбора корней:
Записываем исходное уравнение:
(х - 7)(х + 4) = 0
Подбираем х:
х1 = 7, х2 = -4
Решение через раскрытие скобок, теорему Виета, и дискриминант:
Записываем исходное уравнение:
(х - 7)(х + 4) = 0
Раскрываем скобки:
х*х - 7x + 4x - 28 = 0
x^2 - 7x + 4x - 28 = 0
Приводим подобные:
x^2 - 3x - 28 = 0
1 под
Решаем через теорему Виета:
x1 + x2 = 3
x1*x2 = -28
Откуда:
x1 = 7, x2 = -4
2 под Решение через дискриминант
Записываем исходное уравнение:
x^2 - 3x - 28 = 0
Ищем дискриминант:
D = b^2 - 4ac
D = (-3)^2 -4*1*(-28)
D = 9 - (-112)
D = 9 + 112 = 121
Находим корни уравнения:
В данном решении показано решения данного уравнения. (причем имеет 2 под
80 гривен - стоимость стола
12 гривен - стоимость стула
Объяснение:
х грив. - стоимость одного стола
у грив. - стоимость одного стула
2х + 6у = 232 - первое уравнение
0,15х грив. - скидка 15%
х - 0,15х = 0,85х гривен - новая стоимость одного стола
0,2у грив. - скидка 20%
у + 0,2у = 0,8у гривен - новая стоимость одного стула
0,85х + 2*0,8у = 0,85х + 1,6у
0,85х + 1,6у = 87,2 - второе уравнение
Решаем систему уравнений
2х + 6у = 232
0,85х + 1,6у = 87,2
2х = 232 - 6у
х = 116 - 3у - определили значение Х из первого уравнения, теперь подставляем это значение Х во второе уравнение
0,85*(116 - 3у) + 1,6у = 87,2
98,6 - 2,55у + 1,6у = 87,2
98,6 - 0,95у = 87,2
0,95у = 98,6 - 87,2
0,95у = 11,4
у = 11,4 : 0,95
у = 12 (грив.) - стоимость одного стула
2х + 6у = 232
2х + 6*12 = 232
2х = 232 - 72
2х = 160
х = 160:2
х = 80 (грив.) - стоимость одного стола