Пусть его скорость была -хкм/ч. первый за 2 часа проехал 16*2=32 км, что бы его догнать нужно 32/(х-16) часов. второй за 1 час проехал 10 км, что бы догнать второго нужно 10/(х-10) часов. разница в гонке между ними известно по условию. состовляем уравнение 32/(х-16)-10/(х-10)=4,5 32х-320-10х+160=4,5(х-10)(х-16) при х≠10 и х≠16 22х-160=4,5(х²-26х+160) 4,5х²-139х+880=0 д=59² х1=(139+59)/9=22 х2=(139-59)/9=8.(8) так как х2< 10 то это не может быть решением, так как он никогда не догнал бы даже второго велосипедиста. получаем ответ при х=22км/ч ответ: 22 км/ч
1) Находим точки пересечения функций у=4-х² и у=2-х
4-х²=2-х
х²-х-2=0
х₁*х₂=-2
х₁+х₂=1 => x₁=2; x₂=-1
2) Находим площадь фигуры, заключённой между графиками функций
у=4-х² и у=2-х
\begin{gathered} S=\int\limits^2_{-1} {(4-x^2-3+x)} \, dx =\int\limits^2_{-1} {(1-x^2+x)} \, dx=(x- \frac{x^3}{3}+ \frac{x^2}{2})|^2_{-1}==2-8/3+2-(-1+1/3+1/2)=4-8/3+1-1/3-1/2==5-1/2-3=2-1/2=1 \frac{1}{2} \end{gathered}S=−1∫2(4−x2−3+x)dx=−1∫2(1−x2+x)dx=(x−3x3+2x2)∣−12==2−8/3+2−(−1+1/3+1/2)=4−8/3+1−1/3−1/2==5−1/2−3=2−1/2=121