Метод матем индукции 1) проверим делимость на 3 при n=1 при n=1 4n^3+6n^2+5n+9=4+6+5+9=24 - делится на 3 2) предположим что делится на 3 при n=k при n=к 4n^3+6n^2+5n+9=4k^3+6k^2+5k+9=(3k^3+6k^2+3k+9)+(k^3+2k) - делится на 3 значит (k^3+2k) - делится на 3, так как (3k^3+6k^2+3k+9) делится на 3 3) проверим делимость на 3 при n=k+1 при n=к+1 4n^3+6n^2+5n+9=4(к+1)^3+6(к+1)^2+5(к+1)+9= =(3(к+1)^3+6(к+1)^2+3(к+1)+9)+((к+1)^3+2(к+1)) = A+B A=(3(к+1)^3+6(к+1)^2+3(к+1)+9) - делится на 3 B=(к+1)^3+2(к+1)=k^3+3k^2+3k+1+2k+2=(k^3+2k)+(3k^2+3k+3) = C+D C = (k^3+2k) - делится на 3 (см пункт 2) ) D = (3k^2+3k+3) - делится на 3 значит B=C+D - делится на 3 значит 4n^3+6n^2+5n+9 при n=k+1 делится на 3 так как n=k+1 4n^3+6n^2+5n+9 = A+B <<< доказано методом математической индукции >>>>
Пусть А - событие, которое состоится, если наудачу взятое двузначное число кратно 2, а В - событие, которое состоится, если это число кратно 7. Надо найти Р(А + В).Так как А и В - события совместные, то:
Р(А + В) = Р(А) + Р(В) - Р(АВ).
Двузначные числа - это 10, 11, . . . ,98, 99.
Всех их- 90 элементарных исходов. Очевидно, 45 из них кратны 2 (благоприятствуют наступлению А), 13 кратны 7 (благоприятствуют наступлению В) и ,наконец,7 кратны и 2, и 7 одновременно (благоприятствуют наступлению А×В). Далее по классическому определению вероятности:
1) проверим делимость на 3 при n=1
при n=1 4n^3+6n^2+5n+9=4+6+5+9=24 - делится на 3
2) предположим что делится на 3 при n=k
при n=к 4n^3+6n^2+5n+9=4k^3+6k^2+5k+9=(3k^3+6k^2+3k+9)+(k^3+2k) - делится на 3
значит (k^3+2k) - делится на 3, так как (3k^3+6k^2+3k+9) делится на 3
3) проверим делимость на 3 при n=k+1
при n=к+1
4n^3+6n^2+5n+9=4(к+1)^3+6(к+1)^2+5(к+1)+9=
=(3(к+1)^3+6(к+1)^2+3(к+1)+9)+((к+1)^3+2(к+1)) = A+B
A=(3(к+1)^3+6(к+1)^2+3(к+1)+9) - делится на 3
B=(к+1)^3+2(к+1)=k^3+3k^2+3k+1+2k+2=(k^3+2k)+(3k^2+3k+3) = C+D
C = (k^3+2k) - делится на 3 (см пункт 2) )
D = (3k^2+3k+3) - делится на 3
значит B=C+D - делится на 3
значит 4n^3+6n^2+5n+9 при n=k+1 делится на 3
так как n=k+1 4n^3+6n^2+5n+9 = A+B
<<< доказано методом математической индукции >>>>
Пусть А - событие, которое состоится, если наудачу взятое двузначное число кратно 2, а В - событие, которое состоится, если это число кратно 7. Надо найти Р(А + В).Так как А и В - события совместные, то:
Р(А + В) = Р(А) + Р(В) - Р(АВ).
Двузначные числа - это 10, 11, . . . ,98, 99.
Всех их- 90 элементарных исходов. Очевидно, 45 из них кратны 2 (благоприятствуют наступлению А),
13 кратны 7 (благоприятствуют наступлению В) и ,наконец,7 кратны и 2, и 7 одновременно (благоприятствуют наступлению А×В). Далее по классическому определению вероятности:
Р(А) = 45/90 Р(В) = 13/90 Р(А×В) = 7/90
и, следовательно:
Р(А + В) = 45/90 + 13/90 - 7/90 = 51/90
ответ: 51/90