ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :
h(t)=-1,1+20t-10t^2
-1,1+20t-10t^2≥ 4
10t^2 - 20t + 4 + 1,1 ≤ 0
10t^2 - 20t + 5,1 ≤ 0
D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16
t1 = (20+16)/2*10 = 1,8
t2 = (20-16)/2*10 = 0,2
поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.
ответ:Определим моменты времени, когда мяч находился на высоте ровно четыре метра. Для этого решим уравнение :
h(t)=-1,1+20t-10t^2
-1,1+20t-10t^2≥ 4
10t^2 - 20t + 4 + 1,1 ≤ 0
10t^2 - 20t + 5,1 ≤ 0
D = 20^2 - 4 *10*5.1 = 400 - 204 =196 =16
t1 = (20+16)/2*10 = 1,8
t2 = (20-16)/2*10 = 0,2
поскольку по условию задачи мяч брошен снизу вверх, это означает, что в момент времени (с) мяч находился на высоте 4 метра, двигаясь снизу вверх, а в момент времени (с) мяч находился на этой высоте, двигаясь сверху вниз. Поэтому он находился на высоте не менее 4 метров 1,8 − 0,2 = 1,6 секунды.
Объяснение:
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел равна 9. Их четыре.
Следовательно, искомая вероятность Р(А)= 4/36 = 1/9
2) При бросании двух игральных кубиков могут выпасть следующие варианты:
11 12 13 14 15 16
21 22 23 24 25 26
31 32 33 34 35 36
41 42 43 44 45 46
51 52 53 54 55 56
61 62 63 64 65 66
Всего 36 вариантов.
Отметим те варианты, в которых сумма выпавших чисел меньше семи.
Их пятнадцать.
Следовательно, искомая вероятность Р(В)=15/36=5/12