Используем формулы приведения. если π или 2π, то сама функция не меняется, а если π/2 или 3π/2, то меняется а. sin(x-3pi/2)=cosx, т.к. находим на числовой окружности -3π/2 и прибавляем х, приходим в 1 четверть, там sin положительный, знак функции не меняем б. sin(x+3pi/2)=-сosx, т.к находим на числовой окружности 3π/2 и прибавляем х, приходим в 4 четверть, там sin отрицательный, знак функции меняем в. cos(x-3pi/2)=sinx, т.к. находим на числовой окружности -3π/2 и прибавляем х, приходим в 1 четверть, там cos положительный, знак функции не меняем г. cos(x+3pi/2)=sinx, т.к. находим на числовой окружности 3π/2 и прибавляем х, приходим в 4 четверть, там cos положительный, знак функции не меняем д. sin(x-pi)=-sinx, т.к. находим на числовой окружности -π и прибавляем х, приходим в 3 четверть, там sin положительный, знак функции меняем е. cos(x-pi)=cosx, т.к. находим на числовой окружности -π и прибавляем х, приходим во 2 четверть, там cos положительный, знак функции не меняем
1) на формулы сокращенного умножения 2) на формулы сокращенного умножения и вынесение общего множителя 3) на формулы сокращенного умножения 4) решение квадратных уравнений и вынесение общего множжителя 5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.
а. sin(x-3pi/2)=cosx, т.к. находим на числовой окружности -3π/2 и прибавляем х, приходим в 1 четверть, там sin положительный, знак функции не меняем
б. sin(x+3pi/2)=-сosx, т.к находим на числовой окружности 3π/2 и прибавляем х, приходим в 4 четверть, там sin отрицательный, знак функции меняем
в. cos(x-3pi/2)=sinx, т.к. находим на числовой окружности -3π/2 и прибавляем х, приходим в 1 четверть, там cos положительный, знак функции не меняем
г. cos(x+3pi/2)=sinx, т.к. находим на числовой окружности 3π/2 и прибавляем х, приходим в 4 четверть, там cos положительный, знак функции не меняем
д. sin(x-pi)=-sinx, т.к. находим на числовой окружности -π и прибавляем х, приходим в 3 четверть, там sin положительный, знак функции меняем
е. cos(x-pi)=cosx, т.к. находим на числовой окружности -π и прибавляем х, приходим во 2 четверть, там cos положительный, знак функции не меняем
2) на формулы сокращенного умножения и вынесение общего множителя
3) на формулы сокращенного умножения
4) решение квадратных уравнений и вынесение общего множжителя
5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.