Номер 2: Решите уравнение 3(x − 2)(x + 4) = 2x2 + x. Номер 3: На кружок по физике записались семиклассники и восьмиклассники. Количество семиклассников, записавшихся на кружок, относится к количеству восьмиклассников как 6 :5 соответственно. Сколько всего школьников записалось на кружок по физике, если среди них 30 семиклассников? Номер 4: Прямая y = −3x + b проходит через точку (5; − 21). Найдите b. Номер 5: В саду растут только яблони и груши, всего 50 деревьев. Число яблонь относится к числу груш как 2 к 3. Найдите вероятность того, что случайно выбранное дерево в саду окажется яблоней. Номер 6: Тест выполнили 80 учащихся. Отметки «четыре» или «пять» получили 40% тестировавшихся, из них отметку «пять» получили 25%. Сколько учащихся получили отметку «пять»? Номер 7: Один из углов равнобедренного тупоугольного треугольника на 111° больше другого. Найдите больший угол этого треугольника. ответ дайте в градусах. Номер 8: Выберите неверное утверждение и запишите в ответе его номер. 1) Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются. 2) Если при пересечении двух параллельных прямых другой прямой сумма накрест лежащих углов равна 180°, то секущая перпендикулярна параллельным прямым. 3) Диагонали параллелограмма точкой их пересечения делятся пополам.
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
Здесь и далее фраза "не нарушая общности" будет означать, что мы можем так перетасовать вертикали и горизонтали, чтобы нужные нам линии имели нужные обозначения.
Пусть на некоторой вертикали (не нарушая общности - на вертикали А) находится 0<k<8 рыцарей (не нарушая общности - на полях с А1 по Аk). Рассмотрим лжеца на поле А8. Поскольку он утверждает, что на его горизонтали больше лжецов, чем на его вертикали, на самом деле это не так. Следовательно, на восьмой горизонтали как минимум k рыцарей (не нарушая общности - на полях с B8 по чётотам-8). Рассмотрим пересечения их вертикалей с первой горизонталью. Если бы на всех этих пересечениях стояли рыцари, то на первой вертикали оказалось бы минимум k+1 рыцарей, и рыцарь на А1 солгал бы. Значит, на каком-то из них (не нарушая общности - на В1) стоит лжец. При этом на вертикали В , согласно утверждению рыцаря с В8, более k рыцарей. Значит, следуя утверждению лжеца с B1, на горизонтали 1 также более k рыцарей. Получается, рыцарь с А1 лжёт. Противоречие.
Парадокс разрешим лишь в том случае, когда на каждой вертикали стоят либо 8 рыцарей, либо 8 лжецов. Из этого, в частности, следует доказываемое утверждение
Объяснение:
Не знаю правильно ли