Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
Площадь уменьшится. к примеру возьмём прямоугольник с длинной 4 , а шириной 3. его площадь s=ab ( площадь равна длинна умножить на ширину ),площадь данного прямоугольника будет равна 3 * 4 = 12. если увеличить длину на 10% , то его длинна будет равна 4 + 10% от 4(10% от 4 = 4 разделить на 100 и умножить на 10 и это равно 0,4 или четыре десятых) следовательно его длинна будет равна 4,4. а так как ширина уменьшилась на 20 % то она будет равна 3 - 20% от 3(20% от 3 равно 3 разделить на 100 и умножить на 20 или просто 3 разделить на 5. 20% от 3 равно 0,6) следовательно его ширина будет равна 3 - 0,6 = 2,4. теперь подсчитаем площадь(2.4 умножить на 4.4 =10,56 ) 10,56 < 12 следовательно при < < длину увеличить на 10%, а ширину уменьшить на 20% в прямоугольнике> > площадь уменьшится
Время, за которое первый лыжник преодолел расстояние в 40 км будет:
40/(х-2)=t
Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет:
48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение:
t=40/(х-2)=48/х
Решаем это уравнение относительно х:
40 = 48
х-2 х
40*х=48*(х-2)
40х=48х-48*2
40х=48х-96
48х-40х=96
8х=96
х=96:8
х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.:
12-2=10 км/ч - скорость первого лыжника.