№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка:
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу:
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
Каждую точку можно соединить с 14-ю другими. То есть из каждой точки можно провести 14 отрезков. Точек у нас 15. 14*15 = 210. Но так как отрезок, допустим, АВ и отрезок ВА - это один и тот же отрезок, то мы учли каждый отрезок по два раза. Поэтому, что б каждый отрезок учитывался по одному разу, разделим 210 на 2 и получим 105.
Первую точку можем соединить отрезком с 14-ю другими. С первой точкой вторую мы уже соединили, поэтому вторую точку можем соединить уже с 13-ю, по аналогии 3-ю точку с 12-ю, ... , 14-ю точку с одной, 15-я точка уже соединена со всеми. Подсчитаем количество отрезков. 14+13+12+11+10+9+8+7+6+5+4+3+2+1 = 105.
а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: .
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка:
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
Первую точку можем соединить отрезком с 14-ю другими. С первой точкой вторую мы уже соединили, поэтому вторую точку можем соединить уже с 13-ю, по аналогии 3-ю точку с 12-ю, ... , 14-ю точку с одной, 15-я точка уже соединена со всеми. Подсчитаем количество отрезков. 14+13+12+11+10+9+8+7+6+5+4+3+2+1 = 105.