это квадраты натуральных чисел 1, 4, 9, 16, 25 и т.д.
пояснение. каждому делителю d числа n, соотвествует другой делитель n/d
если расположить делители в порядке возрастания
1=d[1]<d[2]<..d[k]<d[k+1]<..<d[l]=n
и так делителю d[1]=1 соовтествет делитель d[l]=n
d[2] делитель d[l-1] и наоборот
так как у числа должно быть нечетное число делителей, то "средний" в списке делителей по возрастанию делитель d равен делителю n/d, но тогда
d=n/d
n=d^2
т.е. иными словами если у числа нечетное число делителй, то оно является квадратом натурального числа
это квадраты натуральных чисел 1, 4, 9, 16, 25 и т.д.
пояснение. каждому делителю d числа n, соотвествует другой делитель n/d
если расположить делители в порядке возрастания
1=d[1]<d[2]<..d[k]<d[k+1]<..<d[l]=n
и так делителю d[1]=1 соовтествет делитель d[l]=n
d[2] делитель d[l-1] и наоборот
так как у числа должно быть нечетное число делителей, то "средний" в списке делителей по возрастанию делитель d равен делителю n/d, но тогда
d=n/d
n=d^2
т.е. иными словами если у числа нечетное число делителй, то оно является квадратом натурального числа
x+4=2x -2x+3=2x-5
x-2x=-4 -2x-2x=-5-3
-x=-4 -4x=-8
x=4 x=2
y=4+4=8 y=2*2-5=-1
Точка пересечения (4;8) Точка пересечения (2; -1)
в)y=-x; y=3x-4 г)y=3x+2; y=-0,5x-5
-x=3x-4 3x+2=-0,5x-5
-x-3x=-4 3x+0,5x=-5-2
-4x=-4 3,5x=-7
x=1 x=-2
y=-x=-1 y=3*(-2)+2=-4
Точка пересечения (1; -1) Точка пересечения (-2; -4)