Задача: Из A в B одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого авт-ста на 17 км/ч, а вторую половину пути проехал со скоростью 102 км/ч, в результате чего прибыл в В одновременно с первым авт-стом. Найдите скорость первого автомобилиста, если известно, что она больше 65 км/ч.
Обозначим скорость первого автомобилиста за x (км/ч), тогда сорсть второго на первом полупути — ха x−17 (км/ч), на втором полупути — 102 км/ч. Оба проехали общий путь за одно и то же время. Составим и решим уравнение, при условии, что x > 65 (км/ч).
ответ: | a + b + c + d | = 93 .
Объяснение:
x=√2+√3+√6 - корiнь рівняння x⁴+ax³+bx²+cx+d=0. Перетворимо
корінь : x - √2 = √3+√6 ; піднесемо до квадрата :
( x - √2)² = (√3+√6)² ;
x² - 2√2 x + 2 = 3 + 2√3*√6 + 6 ;
x² - 2√2 x + 2 = 9 + 2√3*√6 ;
x² - 7 = 2√2 x + 2√18 ; піднесемо до квадрата :
( x² - 7)² = (2√2 x + 2√18)² ;
x⁴ - 14x² + 49 = 8x² + 48x + 72 ;
x⁴ - 22x² - 48x - 23 = 0 . Порівняємо коефіцієнти цього многочлена
і заданого в умові : a = 0 ; b = - 22 ; c = - 48 ; d = - 23 . Знайдемо
значення виразу : | a + b + c + d | = | 0 - 22 - 48 - 23 | = | - 93 | = 93 .
Задача: Из A в B одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого авт-ста на 17 км/ч, а вторую половину пути проехал со скоростью 102 км/ч, в результате чего прибыл в В одновременно с первым авт-стом. Найдите скорость первого автомобилиста, если известно, что она больше 65 км/ч.
Обозначим скорость первого автомобилиста за x (км/ч), тогда сорсть второго на первом полупути — ха x−17 (км/ч), на втором полупути — 102 км/ч. Оба проехали общий путь за одно и то же время. Составим и решим уравнение, при условии, что x > 65 (км/ч).
x₂ = 51 < 65 — не удовлетворяет условие
х₁ = 68 > 65 — удовлетворяет условие
ответ: Скорость первого автомобилиста — 68 км/ч.