Нова копіювальна машина за 1 хв копіює на 14 аркушів більше, ніж стара машина. За 10 хв роботи на ній зробили на 50 копій більше, ніж на старій машині за 15 хв. Скільки аркушів копіює нова машина за 1 хв?
Так как угол при верхнем основании состоит из прямого угла и верхнего угла бокового треугольника, образованного боковой стороной и высотой, то угол при вершине этого треугольника равен: α = 135 - 90 = 45° В данном прямоугольном треугольнике высота равна гипотенузе, умноженной на косинус прилежащего угла в 45°. Тогда: h = b*cosα = 12*√2/2 = 6√2 (см)
Площадь трапеции равна произведению средней линии на высоту: S = ch = 10*6√2 = 60√2 (см) ≈ 85 (см²)
1) Событие А - "по крайней мере, один раз выпавшее очко окажется меньше 3" - представляет собой сумму трёх несовместных событий: А1 - при первом бросании выпадет меньше 3 очков, при втором - 3 или больше; А2 - при первом бросании выпадет 3 очка или больше, при втором - меньше 3; А3 - при обоих бросаниях выпадет меньше 3 очков.
Вероятности этих событий Р1=1/3* 2/3=2/9, Р2=2/381/3=2/9, Р3=1/3*1/3=1/9.
Так как А=А1+А2+А3 и события А1,А2 и А3 несовместны, то искомая вероятность Р=Р1+Р2+Р3=5/9. ответ: 5/9.
2) Искомое событие А является суммой двух несовместных событий: А1 - при первом бросании выпадет меньше 3 очков, при втором - 3 или больше; А2- при первом бросании выпадет 3 очка или больше, при втором -меньше 3. Вероятности этих событий Р1=1/3*2/3=2/9, Р2=2/3*1/3=2/9. Тогда А=А1+А2 и Р=Р1+Р2=4/9. ответ: 4/9.
α = 135 - 90 = 45°
В данном прямоугольном треугольнике высота равна гипотенузе, умноженной на косинус прилежащего угла в 45°.
Тогда:
h = b*cosα = 12*√2/2 = 6√2 (см)
Площадь трапеции равна произведению средней линии на высоту:
S = ch = 10*6√2 = 60√2 (см) ≈ 85 (см²)
ответ: ≈ 85 см²
А1 - при первом бросании выпадет меньше 3 очков, при втором - 3 или больше;
А2 - при первом бросании выпадет 3 очка или больше, при втором - меньше 3;
А3 - при обоих бросаниях выпадет меньше 3 очков.
Вероятности этих событий Р1=1/3* 2/3=2/9, Р2=2/381/3=2/9, Р3=1/3*1/3=1/9.
Так как А=А1+А2+А3 и события А1,А2 и А3 несовместны, то искомая вероятность Р=Р1+Р2+Р3=5/9. ответ: 5/9.
2) Искомое событие А является суммой двух несовместных событий:
А1 - при первом бросании выпадет меньше 3 очков, при втором - 3 или больше;
А2- при первом бросании выпадет 3 очка или больше, при втором -меньше 3.
Вероятности этих событий Р1=1/3*2/3=2/9, Р2=2/3*1/3=2/9.
Тогда А=А1+А2 и Р=Р1+Р2=4/9. ответ: 4/9.