Новая копировальная машина за 1 мин. копирует на 10 листов больше, чем старая машина. За 4 мин. работы на ней сделали на 16 копий(-и) больше, чем на старой машине — за 7 мин.
Сколько листов копирует новая машина за 1 мин?
Новая машина копирует листов за 1 мин решить
x->5
lim((2x²+15x+25)/(x²+15x+50))=(2*(-5)²+15*(-5)+25)/((-5)²+15*(-5)+50)=0/0
x->-5
1. 2x²+15x+25=2*(x+5)*(x+2,5)
2x²+15x+25=0. x₁=-5, x₂=-2,5
2. x²+15+50=(x+50*(x+10)
x²+15x+50=0
x₁=-5, x₂=-10
lim((2x²+15x+25)/(x²+15x+50))=lim((2*(x+5)*(x+2,5)))/((x+5)*(x+10))=
x=->-5 x->-5
=lim(2*(x+2,5)/(x+10))=2*(-5+2,5)/(-5+10)=-5/5=-1
x->-5
lim((2x²+15x+25)/(x²+15x+50))=∞/∞
x->∞
lim((2x²/x²+15x/x²+25/x²)/(x²/x²+15x/x²+50/x²))=
x->∞
=lim((2+15/x+25/x²)/(1+15/x+50/x²)=2/1=2
x->∞
величинами 15/x, 25/x², 50/x² можно пренебречь, т.к при x->∞ их значение ->0. они бесконечно малы
ВСМ=80
2)а) не знаю
б) рассмотрим АВК ВК=12 АК=4
По т.Пифагора
АВ=\/144+16=4\/40 (\/-это квадратный корень)
S abk=1/2*4*12=24
S abcd=24*2+12*5=108
3)Предположим, что это так, значит тр. ВОС и тр. AOD подобны,значит ВО/ОD=СО/ОА, 6/12=5/15, 3=3, значит треугольники действительно подобны (по двум сторонам и углу между ними), значит 3*SВОС=SАОD из следствия подобия треугольников угол ВСО = углу ОАD, углы являются накрест лежащими при прямых ВC и AD, значит ВС// AD, следовательно по признаку AВCD- трапеция.
Т.к отношение площадей треугольников равно квадрату коэффициента подобия, то к=3,а SАОD /SВОС=3^2, т.е 9.