В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
fayafaya1
fayafaya1
02.07.2022 12:53 •  Алгебра

.Нужен рисунок,дано и решение.​


.Нужен рисунок,дано и решение.​

Показать ответ
Ответ:
Богдана348
Богдана348
08.04.2021 20:17
(sina+cosa)^2 + (sina+ cosa^2 -2=2( sina+cosa)^2=
= 2(sin^2 a +2sinacosa + cos^2 a ) -2 = 2(1+2sinacosa)-2=2 + 4sinacosa -2=
= 4sinacosa
Если уже изучили формулы двойного аргумента, то в ответе поkучим 2sin2a  При решении воcпользовались формулой sin^2 a+cos^2 а =1
3) Упростить: sin^2 a +cos^2 a +ctg^2a= 1+ctg^2a=1/ sin^2 a.
4) ctga=cosa/sina. Sina нам известен, осталось найти сosa:
 =+- V(1-cos^2 a) =+- V( 1-sin^2a)=+-V(1-1/16)= +-V15/16  
( V- корень квадратный.  Т.к cosa  во второй четверти отрицателен,то из двух знаков +- оставим только минус.
 Итак cosa= - V15/4 (в этом выражении V относится только к числителю )
ctga=-V15/4:1/4  после сокращения на 4 получим ответ ctg= -V15 
2) Разделим почленно все слагаемые на sin^2acos^2b получим дробь
sin^2a+sin^2b-sin^2a*sin^2b+cos^2a*cos^2b
=
                  sin^2acos^2b
1/cos^2b+tg^2b-tg^2b+ctg^2a=1/cos^2b+ctg^2 a
0,0(0 оценок)
Ответ:
juliamarvel1
juliamarvel1
05.06.2020 06:50

Пусть (x₀;y₀) - точка касания. Так как точка  (x₀;y₀) находится на параболе y=x², то точка имеет координаты (x₀;x²₀)

0 < x₀< 6

Уравнение касательной к кривой  y=f(x) в точке (x₀;y₀)  имеет вид:

y- f(x₀)=f`(x₀)(x-x₀)

f`(x)=2x

f`(x₀)=2x₀

y -x²₀ =2x₀(x-x₀)

y=2x₀x - x²₀  - уравнение касательной

Касательная пересекает ось Ох в точке A(x₀/2)

2x₀x - x²₀=0

x₀(2x - x₀)=0

х=x₀/2

Касательная пересекает прямую х=3 в точке B(3; 6x₀ - x²₀)

y=2x₀ 3 - x²₀

y = 6x₀ - x²₀

Пусть С(3;0)

BC=6x₀ - x²₀

AC=3-(x₀/2)

S_(Δ)=(1/2)AC*BC=(1/2)(3-(x₀/2))·(6x₀ - x²₀) - исследуем  функцию на экстремум  на [0;3]

Обозначим x₀=t

S(t)=(1/2)(3-(t/2))·(6t - t²)

S(t)=(1/4)(6-t)·(6t - t²)

S(t)=(1/4)*F(t)

F(t)=t(6-t)^2

S(t)  принимает наибольшее значения в тех же точках, в каких и F(t)

Исследуем на [0;3]

F`(t)=t`·(6-t)²+t·((6-t)²)`=(6-t)²+t·2(6-t)·(6-t)`=(6-t)(6-t-2t)=(6-t)(6-3t)

F`(t)=0

6-t=0 ⇒  t=6 не  принадлежит [0;3]  или  6-3t=0 ⇒ t=2  принадлежит [0;3]

t=2 - точка максимума, производная меняет знак с + на -

О т в е т.  S(2)=(1/4)(6-2)·(6·2 - 2²) ;  S(2)=8 - наибольшее значение

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота