В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bobrikov01
bobrikov01
25.09.2021 10:26 •  Алгебра

Нужен только 7 Вариант Решение в тетрадке ( Грамотно )! До вторника

Показать ответ
Ответ:
andrewgray
andrewgray
16.09.2020 02:07

Заметим ,что наименьшие значения  функций:

2^(x-3) +4>4

5*|tg(x)|+3*|ctg(x)|>=2√15      (из соображений  полного квадрата  и положительности каждого из членов |tg(x)|*|ctg(x)|=1)

Рассмотрим случай когда : a<-2√15

В этом случае  числитель будет  отрицателен при любом  x:

a-(2^(x-3) +4)<0

Знаменатель  же ,будет положителен не всегда, тк  при  каком нибудь x обязательно  найдется значение    5*|tg(x)|+3*|ctg(x)|>a ,тк  оно  имеет область значений от 2√15  до бесконечности) .  То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15  будут существовать решения неравенства.

Рассмотрим случай когда: a>4

Тут  ситуация иная:

Знаменатель тут  всегда положителен,а вот  числитель не  всегда отрицателен,то есть решения так же будут существовать .

Наконец рассмотрим случай когда:

     -2√15<=a<=4

В  этом случае числитель всегда  отрицателен (при  любом x), а  знаменатель же  наоборот будет неотрицателен. Таким образом только на  этом интервале неравенство не будет иметь решения не для какого x. Тк  отношение числителя и знаменателя всегда будет отрицательным. P.S  Не у  кого тут нет вопросов  почему  строгое неравенство  для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему  же строгое и для  4,  а дело  все в том ,что: 2^(x-3) +4≠4  , а только стремится к нему при  стремлении x к бесконечности,поэтому опасаться за равенство нулю  числителя не  стоит.

Таким образом

ответ:  a∈[-2√15;4]

0,0(0 оценок)
Ответ:
vikasaaan
vikasaaan
16.09.2020 02:07

Заметим ,что наименьшие значения  функций:

2^(x-3) +4>4

5*|tg(x)|+3*|ctg(x)|>=2√15      (из соображений  полного квадрата  и положительности каждого из членов |tg(x)|*|ctg(x)|=1)

Рассмотрим случай когда : a<-2√15

В этом случае  числитель будет  отрицателен при любом  x:

a-(2^(x-3) +4)<0

Знаменатель  же ,будет положителен не всегда, тк  при  каком нибудь x обязательно  найдется значение    5*|tg(x)|+3*|ctg(x)|>a ,тк  оно  имеет область значений от 2√15  до бесконечности) .  То есть в зависимости от x, может быть как и положителен так и отрицателен. Вывод: при a<-2√15  будут существовать решения неравенства.

Рассмотрим случай когда: a>4

Тут  ситуация иная:

Знаменатель тут  всегда положителен,а вот  числитель не  всегда отрицателен,то есть решения так же будут существовать .

Наконец рассмотрим случай когда:

     -2√15<=a<=4

В  этом случае числитель всегда  отрицателен (при  любом x), а  знаменатель же  наоборот будет неотрицателен. Таким образом только на  этом интервале неравенство не будет иметь решения не для какого x. Тк  отношение числителя и знаменателя всегда будет отрицательным. P.S  Не у  кого тут нет вопросов  почему  строгое неравенство  для -2√15(знаменателю быть равным нулю не запрещается,тк наша цель отсутствие решений). Почему  же строгое и для  4,  а дело  все в том ,что: 2^(x-3) +4≠4  , а только стремится к нему при  стремлении x к бесконечности,поэтому опасаться за равенство нулю  числителя не  стоит.

Таким образом

ответ:  a∈[-2√15;4]

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота