Пусть V - объём ванны. Пусть V1 - объём воды, который поступает в ванну за 1 минуту от первого крана, а V2 - объём воды, который вытекает за 1 минуту через второй кран. Так как по условию при совместной работе двух кранов ванна опорожнится, то V2>V1. Тогда за 1 минуту совместной работы кранов объём воды в ванной уменьшится на V2-V1. По условию, (V2-V1)*36=V. Если будет работать только второй кран, то он опорожнит полную ванну за время V/V2 мин., а если будет работать только первый кран. то он наполнит ванну за время V/V1 мин. По условию, V/V1=V/V2+3. Таким образом, мы получили систему уравнений:
(V2-V1)=V/36 V/V1=V/V2+3
Подставляя выражение для V из первого уравнения во второе, приходим к уравнению 36*V2/V1-36=36-36*V1/V2+3, или 36*V2/V1+36*V1/V2-75=0. Обозначая теперь V2/V1=x и сокращая на 3, приходим к уравнению 12*x+12/x-25, которое приводится к квадратному уравнению 12*x²-25*x+12=0. Его дискриминант D=(-25)²-4*12*12=625-576=49=7², откуда x1=(25+7)/24=4/3 и x2=(25-7)/24=3/4. Но так как x=V2/V1, а V2>V1, то x>1. Значит, x=4/3, т.е. V2=4/3*V1. Тогда V2-V1=1/3*V1, и 1/3*V1*36=12*V1=V. Отсюда V/V1=12 мин, то есть первый кран наполнит ванну за 12 минут. Но тогда V/V2=V/(4/3*V1)=3/4*V/V1=3/4*12=9, то есть второй кран опорожнит ванну за 9 минут. ответ: первый кран наполнит пустую ванну за 12 минут, второй кран опорожнит полную ванну за 9 минут.
решить уравнение (x²+x+1)*(x²+x+2) - 12=0
замена : t =x² + x + 1,5 * * * (1+2)/2 =1,5 * * *
(t - 0,5)*(t + 0,5)-12 =0 ⇔t² - 12,25 =0 ⇔(t +3,5)(t-3,5) =0 ⇒t₁= -3,5 ; t₂=3,5.
Обратная замена
a) x² + x + 1,5 = -3,5 ⇔ x² + x + 5 =0; D = (-1)² -4*1*5 = -19 < 0 не имеет
действительных корней * * * [ x =(-1 -i√19)/2 ; x =(-1 +i√19)/2 * * *
a) x² + x + 1,5 = 3,5 ⇔ x² + x - 2 = 0 ⇒x₁= -2 ; x₂=1.
ответ: { - 2 ; 1}
* * * можно и t = x² + x + 1 или t = x² + x + 1 * * *
(V2-V1)=V/36
V/V1=V/V2+3
Подставляя выражение для V из первого уравнения во второе, приходим к уравнению 36*V2/V1-36=36-36*V1/V2+3, или 36*V2/V1+36*V1/V2-75=0. Обозначая теперь V2/V1=x и сокращая на 3, приходим к уравнению 12*x+12/x-25, которое приводится к квадратному уравнению 12*x²-25*x+12=0. Его дискриминант D=(-25)²-4*12*12=625-576=49=7², откуда x1=(25+7)/24=4/3 и x2=(25-7)/24=3/4. Но так как x=V2/V1, а V2>V1, то x>1. Значит, x=4/3, т.е. V2=4/3*V1. Тогда V2-V1=1/3*V1, и 1/3*V1*36=12*V1=V. Отсюда V/V1=12 мин, то есть первый кран наполнит ванну за 12 минут. Но тогда V/V2=V/(4/3*V1)=3/4*V/V1=3/4*12=9, то есть второй кран опорожнит ванну за 9 минут. ответ: первый кран наполнит пустую ванну за 12 минут, второй кран опорожнит полную ванну за 9 минут.