Квадратные уравнения решаются очень легко. Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант:
Если уравнение не имеет решений (вообще имеет, но это в школе не проходят). Если то уравнение имеет 1 решение (корень). Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
a > b и b < a
Объяснение:
Решение на фото, на всякий случай продублирую, если будет не видно.
Неверные неравенства:
a > b и b < a
Представим, что точка А это -2 (можно брать и -1, результат будет таким же). Точка b - это +1
Исходя из этого решаем:
1)b> a
1 > -2 - верно, т.к положительное число больше отрицательного;
2) a + 10 < b + 10
-2 + 10 < 1 + 10
8 < 11 - верно;
3) a < 0
-2 < 0 - верно, т.к отрицательное число меньше нуля;
4) a > b
-2 > 1 - неверно, т.к положительное число больше отрицательного
-2 < 1 - верно
5) b < a
1 < -2 - неверно, т.к положительное число больше отрицательного
1 > -2 - верно
Самый классический их решения, через дискриминант.
Во первых надо знать, что Квадратное уравнение имеет 2 корня (основная теорема алгебры).
Во вторых надо знать, что если число (дискриминант) под корнем отрицательно, то решения у уравнения нет.
В общем виде, квадратное уравнение выглядит так:
При этом , так как уравнение обращается в линейное.
Поначалу находят дискриминант:
Если уравнение не имеет решений (вообще имеет, но это в школе не проходят).
Если то уравнение имеет 1 решение (корень).
Если - уравнение имеет 2 корня.
После того как ты нашел сам дискриминант, используешь следующую формулу:
Если не понятно.
То вот: