23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
ax² + bx + c = 0
D = b² - 4ac
x12 = (-b +- √D)/2a
D - это дискриминант
х12 - корни квадратного уравнения
+- это плюс минус
1
3x²+8x-21 = 3(x + (-4 - √79)/3)*(x + (-4 + √79)/3)
для разложения надо найти корни
D = 8² - 4*3*(-21) = 64 + 252 = 316
x12 = (-8 +- √316)/6 = (-4 +- √79)/3
2
5x²-4x+c=0
D = 16 - 20c = 0
16 - 20c = 0
20c = 16
c = 16/20 = 4/5
x12 = (4 + - 0)/10 = 4/10 = 2/5
корень 2/5
3
5x²-11 |x|-12=0
x² = |x|²
|x| вседа больше равен 0
5|x|²-11 |x|-12=0
D = 11² + 4*5*12 = 361 = 19²
|x| = (11 +- 19)/10 = 3 и -8/10
-8/10 < 0 не подходит
|x| = 3
x = 3
x = -3
ответ -3 и 3
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число