Катер береговой охраны по течению реки Конго 120 км и вернулся обратно. Известно, что обратный путь занял на 1 час больше времени, а скорость катера в неподвижной воде равна 27 км/ч. Найдите скорость течения. ответ дайте в км/ч.
х - скорость течения реки
27+х - скорость катера по течению
27-х - скорость катера против течения
120/(27+х) - время катера по течению
120/(27-х) - время катера против течения
По условию задачи, время против течения на 1 час больше, уравнение:
120/(27-х)-120/(27+х)=1
Общий знаменатель (27-х)(27+х), надписываем над числителями дополнительные множители, перемножаем:
Сколькими можно выбрать три элемента множества, если множество состоит из десяти элементов? При этом не учитывется в каком порядке выбираются эти три элемента.
Пусть есть множество из 10 натуральных чисел:
{1, 2, 3..., 10}
Выбираем произвольно 3-и элемента. Например
{1, 2, 3}
Сколько таких выборок можно сделать? При условии, что выборки {1, 2, 3} {2, 1, 3} и т.д. - считаются одной и той же выборкой (порядок не учитывается!)
Вобщем формула давно выведена, и для данного случая выглядит так:
3 (км/час) - скорость течения реки.
Объяснение:
Катер береговой охраны по течению реки Конго 120 км и вернулся обратно. Известно, что обратный путь занял на 1 час больше времени, а скорость катера в неподвижной воде равна 27 км/ч. Найдите скорость течения. ответ дайте в км/ч.
х - скорость течения реки
27+х - скорость катера по течению
27-х - скорость катера против течения
120/(27+х) - время катера по течению
120/(27-х) - время катера против течения
По условию задачи, время против течения на 1 час больше, уравнение:
120/(27-х)-120/(27+х)=1
Общий знаменатель (27-х)(27+х), надписываем над числителями дополнительные множители, перемножаем:
(27+х)120-(27-х)120=(27-х)(27+х)
3240+120х-3240+120х=729-х²
х²+240х-729=0, квадратное уравнение, ищем корни:
х₁,₂=(-240±√57600+2916)/2
х₁,₂=(-240±√60516)/2
х₁,₂=(-240±246)/2
х₁= -486/2 отбрасываем, как отрицательный
х₂=6/2
х₂=3 (км/час) - скорость течения реки.
Проверка:
120:30=4 (часа) по течению
120:24=5 (часов) против течения
Разница 1 час, всё верно.
120
Объяснение:
Элементы комбинаторики.
С - это число сочетаний из десяти по три.
Сколькими можно выбрать три элемента множества, если множество состоит из десяти элементов? При этом не учитывется в каком порядке выбираются эти три элемента.
Пусть есть множество из 10 натуральных чисел:
{1, 2, 3..., 10}
Выбираем произвольно 3-и элемента. Например
{1, 2, 3}
Сколько таких выборок можно сделать? При условии, что выборки {1, 2, 3} {2, 1, 3} и т.д. - считаются одной и той же выборкой (порядок не учитывается!)
Вобщем формула давно выведена, и для данного случая выглядит так:
С_10_3=(10!)/[(10-3)!*3!]
10! - читается "десять факториал"
10!=1*2*3*...*9*10.
значит:
С_10_3=(10!)/[(10-3)!*3!] = (10!)/[7!*3!]=8*9*10/(1*2*3)=720/6=120