Найти промежутки возрастания и убывания функции, а также точки максимума и минимума. y= x^2*ln(x) Функция определена при всех х>0 Найдем производную функции y' =(x^2*ln(x))' = (x^2)' *ln(x)+x^2*(ln(x))' = 2x*ln(x) +x^2(1/x) = = x(2ln(x)+1) Найдем критические точки y' =0 или x(2ln(x)+1) =0 2ln(x)+1 = 0 или ln(х) =-1/2 x = e^(-1/2) =1/e^(1/2) =0,606 На числовой оси отобразим знаки производной ..-.. 0+... !! 00,606 Поэтому функция возрастает если х принадлежит (0,606;+бесконечн) Функция убывает если х принадлежит (0;0,606) В точке х=0,606 функция имеет локальный минимум y( e^(-1/2) ) = (e^(-1/2))^2*ln( e^(-1/2)) =e^(-1) *(-1/2) =-1/(2*e) = -0,18 Локального максимума функция не имеет
Каждый квадратный трехчлен ax 2 + bx+ c может быть разложен на множители первой степени следующим образом.
Решим квадратное уравнение: ax 2 + bx+ c = 0 . Если x1 и x2 - корни этого уравнения, то ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) . Это можно доказать, используя либо формулы корней неприведенного квадратного уравнения, либо теорему Виета.
( Проверьте это П р и м е р . Разложить трехчлен 2x 2 – 4x – 6 на множители первой степени. Р е ш е н и е . Во-первых, решим уравнение: 2x 2 – 4x – 6 = 0. Его корни:
x1 = –1 и x2 = 3. Отсюда, 2x 2 – 4x – 6 = 2 ( x + 1 ) ( x – 3 )
Функция определена при всех х>0
Найдем производную функции
y' =(x^2*ln(x))' = (x^2)' *ln(x)+x^2*(ln(x))' = 2x*ln(x) +x^2(1/x) =
= x(2ln(x)+1)
Найдем критические точки
y' =0 или x(2ln(x)+1) =0
2ln(x)+1 = 0 или ln(х) =-1/2
x = e^(-1/2) =1/e^(1/2) =0,606
На числовой оси отобразим знаки производной
..-.. 0+...
!!
00,606
Поэтому функция возрастает если
х принадлежит (0,606;+бесконечн)
Функция убывает если
х принадлежит (0;0,606)
В точке х=0,606 функция имеет локальный минимум
y( e^(-1/2) ) = (e^(-1/2))^2*ln( e^(-1/2)) =e^(-1) *(-1/2) =-1/(2*e) = -0,18
Локального максимума функция не имеет
Решим квадратное уравнение:
ax 2 + bx+ c = 0 .
Если x1 и x2 - корни этого уравнения, то
ax 2 + bx+ c = a ( x – x1 ) ( x – x2 ) .
Это можно доказать, используя либо формулы корней неприведенного квадратного уравнения, либо теорему Виета.
( Проверьте это
П р и м е р . Разложить трехчлен 2x 2 – 4x – 6 на множители первой степени.
Р е ш е н и е . Во-первых, решим уравнение: 2x 2 – 4x – 6 = 0. Его корни:
x1 = –1 и x2 = 3. Отсюда, 2x 2 – 4x – 6 = 2 ( x + 1 ) ( x – 3 )