Пусть х км/час - скорость течения реки. Тогда скорость лодки по течению составляет 13,5+х км/ч, а против течения реки 13,5-х км/ч. За 8 часов лодка проходит по течению расстояние: S(расстояние)=v(скорость)*t (время)=(13,5+х)*8 км, а против течения лодка проплывает (13,5-х)*5 км, что в 2 раза меньше скорости по течению. Составим и решим равенство: (13,5+х)*8=2*(13,5-х)*5 108+8х=10(13,5-х) 108+8х=135-10х 8х+10х=135-108 18х=27 х=27:18=1,5 (км/ч) - скорость течения реки ответ: скорость течения реки составляет 1,5 км/ч
{ 80/(V + v) + 40/(V - v) = 6,5
{ 40/(V + v) + 80/(V - v) = 7
Замена 1/(V + v) = x, 1/(V - v) = y. 1 уравнение умножаем на -2
{ -160x - 80y = -13
{ 40x + 80y = 7
Складываем уравнения
-160x + 40x = -13 + 7
-120x = -6
x = 1/(V + v) = -6/(-120) = 1/20
y = 1/(V - v) = (7 - 40x)/80 = (7 - 40/20) / 80 = 5/80 = 1/16
Получаем новую систему
{ V + v = 20
{ V - v = 16
Складываем уравнения
2V = 36; V = 18 км/ч - это скорость катера.
v = 20 - V = 20 - 18 = 2 км/ч - это скорость течения.
За 8 часов лодка проходит по течению расстояние: S(расстояние)=v(скорость)*t (время)=(13,5+х)*8 км, а против течения лодка проплывает (13,5-х)*5 км, что в 2 раза меньше скорости по течению.
Составим и решим равенство:
(13,5+х)*8=2*(13,5-х)*5
108+8х=10(13,5-х)
108+8х=135-10х
8х+10х=135-108
18х=27
х=27:18=1,5 (км/ч) - скорость течения реки
ответ: скорость течения реки составляет 1,5 км/ч