Расстояние между двумя пристанями равно 161,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 2,6 ч. лодки встретились. Скорость течения реки равна 2 км/ч.
Скорость лодки в стоячей воде равна?
Сколько километров до места встречи пройдёт лодка, плывущая по течению?
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
В решении.
Объяснение:
Расстояние между двумя пристанями равно 161,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 2,6 ч. лодки встретились. Скорость течения реки равна 2 км/ч.
Скорость лодки в стоячей воде равна?
Сколько километров до места встречи пройдёт лодка, плывущая по течению?
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки в стоячей воде.
х + 2 - скорость по течению.
х - 2 - скорость против течения.
2,6(х + 2) - расстояние по течению.
2,6(х - 2) - расстояние против течения.
По условию задачи уравнение:
2,6(х + 2) + 2,6(х -2) = 161,2
2,6х + 5,2 + 2,6х - 5,2 = 161,2
5,2х = 161,2
х = 161,2/5,2
х = 31 (км/час) - скорость лодки в стоячей воде.
31 + 2 = 33 (км/час) - скорость по течению.
33 * 2,6 = 85,8 (км) - пройдёт лодка, плывущая по течению.
31 - 2 = 29 (км/час) - скорость против течения.
29 * 2,6 = 75,4 (км) - пройдёт лодка, плывущая против течения.
Проверка:
85,8 + 75,4 = 161,2 (км), верно.
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.