Пусть х1 и х2 - любые действительные числа (из множества R), удовлетворяющие единственному условию х2 > х1
Тогда функция y = f(x) называется:
- убывающей на R, если при этом: f(x2) < f(x1);
- возрастающей на R, если при этом: f(x2) > f(x1).
Объяснение:
Функция возрастающая - если большему аргументу отвечает большее значение фунцкции. Пусть у нас аргументы буду
По условию
1) Если мы умножим неравенство аргументов на -1, получится, что
Поскольку мы использовали те же значения функции (при данных значениях аргумента значения функций начальных и этих будет одинаково), то
Функция будет убывающей
2)
Поэтому функция возрастающая
Пусть х1 и х2 - любые действительные числа (из множества R), удовлетворяющие единственному условию х2 > х1
Тогда функция y = f(x) называется:
- убывающей на R, если при этом: f(x2) < f(x1);
- возрастающей на R, если при этом: f(x2) > f(x1).
Объяснение:
Функция возрастающая - если большему аргументу отвечает большее значение фунцкции. Пусть у нас аргументы буду
По условию
1) Если мы умножим неравенство аргументов на -1, получится, что
Поскольку мы использовали те же значения функции (при данных значениях аргумента значения функций начальных и этих будет одинаково), то
Функция будет убывающей
2)
Поэтому функция возрастающая
Классификация: дифференциальное уравнение первого порядка, разрешенной относительно производной, неоднородное.
Пусть , тогда
Уравнение Бернулли состоит из двух этапов.
1) Предположим, что второе слагаемое равняется нулю:
Это уравнение с разделяющимися переменными. Переходя к дифференциалам:
Разделим переменные
- уравнение с разделёнными переменными.
Проинтегрируем обе части уравнения:
2) Зная v, найдем u(x)
Проинтегрируем обе части уравнения:
Чтобы записать общее решение исходного уравнения, необходимо выполнить обратную замену.
ответ: