Перепишем так: lim[n-беск)]( (ln(n+2)-ln(n))/(1/(2n+3)) ) Заметим что: ln(n+2)-ln(n)=ln( (n+2)/n )=ln( 1+2/n) При стремлении n к бесконечности получим : ln(1)=0 , 1/(2n+3) также стремиться к нулю при стремлении n к бесконечности,то есть мы видим неопределенность вида 0/0,а значит имеет права применить правило Лапиталя:(берем производные числителя и знаменателя) lim[n-б](1/(n+2) -1/n)/(-2/(2n+3)^2)=(короче дальше лимит переписывать не буду тут неудобно) В общем преобразуем и получим следующее:тк 1/(n+2) -1/n=-2/n*(n+2) (-2 сокращается) получим (2n+3)^2/n*(n+2) (надеюсь понятно как получилось) Поделим на n^2 обе части: (2 +3/n)^2/(1+2/n)=2^2/1=4. ответ:4
Ну вижу я такой слегка "мудреный ". Предполагаем, даже утверждаем: Он родился в 20м веке. Утверждаем так потому, что в противном случае его возраст будет 100 и более лет (такое бывает), но сумма 4х цифр, даже если они все 9, до 100 не дотягивает (36 максимум). А у нас еще одна 1, гарантированная можно сказать. Тогда пусть он родился в год х а сумма цифр года рождения равна Σ. Тогда в 1999 году возраст его будет (1999-x). Т.е. можно записать: (1) Далее исходя из сказанного в 1-м абзаце год рожения будет 19mn, Где m, n целые числа от 0 до 9. Можно х записать так: (2) Сумма цифр года рождения с учетом принятых обозначений выразится так: (3) Тогда выражение (1) с учетом (2) и (3) можно записать так:
Получилось Диафантово уравнение (4) Где m, n - целые, и при этом m, n ∈[0; 9] (5) т. е. (=0,1, 2, 3, 4, 5, 6, 7, 8, 9)
Выразим из (4) n через m. (6) Да ещё можно добавить условие (см выше) 1999-x<(1+9+9+9)=28 x>1999-28=1971 x>1971 (7) На основании (6), (7) перебором исключаем невозможные значения m (десятки лет). У нас, благодаря (7) всего 3 значения 7, 8, 9 смотрим
m=8 и m=9 исключаем. В первом случае n получается дробное. Во втором n отрицательное и выходит за пределы разрешённого диапазона [0; 9]. Итак остается один вариант m=7. Соответсвенно n=6. Итого: Год рождения 1976 Сумма цифр Σ=1+9+7+6=23 Соответствено и возраст 1999-1976=23
Утверждаем так потому, что в противном случае его возраст будет 100 и более лет (такое бывает), но сумма 4х цифр, даже если они все 9, до 100 не дотягивает (36 максимум). А у нас еще одна 1, гарантированная можно сказать.
Тогда пусть он родился в год х а сумма цифр года рождения равна Σ. Тогда в 1999 году возраст его будет (1999-x). Т.е. можно записать:
(1)
Далее исходя из сказанного в 1-м абзаце год рожения будет
19mn, Где m, n целые числа от 0 до 9. Можно х записать так:
(2)
Сумма цифр года рождения с учетом принятых обозначений выразится так:
(3)
Тогда выражение (1) с учетом (2) и (3) можно записать так:
Получилось Диафантово уравнение
(4)
Где m, n - целые, и при этом m, n ∈[0; 9] (5)
т. е. (=0,1, 2, 3, 4, 5, 6, 7, 8, 9)
Выразим из (4) n через m.
(6)
Да ещё можно добавить условие (см выше)
1999-x<(1+9+9+9)=28
x>1999-28=1971
x>1971 (7)
На основании (6), (7) перебором исключаем невозможные значения m (десятки лет). У нас, благодаря (7) всего 3 значения 7, 8, 9
смотрим
m=8 и m=9 исключаем. В первом случае n получается дробное. Во втором n отрицательное и выходит за пределы разрешённого диапазона [0; 9].
Итак остается один вариант m=7. Соответсвенно n=6.
Итого:
Год рождения 1976
Сумма цифр Σ=1+9+7+6=23
Соответствено и возраст 1999-1976=23
ОТВЕТ: Ну нас про сумму спрашивали Σ=23.