Первообразная (F(x)) - это функция (а не точка), которая ищется интегрированием другой функции (f(x))
Объяснение:
Находим интеграл от (3x-2)^8, для этого преобразовываем дифференциал (dx). добавляем 1/3 * 3 и тройку заносим под знак дифференциала: d(3x), 1/3 остаётся за интегралом. Константу можно добавить "просто так", ведь производная простого числа - 0, и получаем d(3x-2). Далее интегрируем это выражение как одну переменную: интеграл от а равен а^2/2. здесь интеграл от а^8 = а^9/9. Получаем ответ, не забываем С
Объяснение:
1. В примере а) коэффициенты k= равны 0,5, значит их графики параллельны.
В примере в) коэффициенты k=5, значит их графики параллельны.
2. ответ 3. Кубическая парабола, ветви графика расположены в 1 и 3 четвертях.
3. АБВГ
2413
4. 2x + y = 8
2x - y = 1
Из первого уравнения y = 8 - 2x. Тогда подставляем выражение во второе уравнение:
2x - (8 - 2x) = 1
2x - 8 + 2x = 1
4x = 9
x = 2,25
y = 8 - 2*2,25 = 8 - 4,5 = 3,5
ответ: (2,25; 3,5)
5. а) 1) y = 3x+1. Область определения функции - все действительные значения аргумента.
2) . Область определения: 3x - 9 не равно нулю. Значит, x не равен 3. Следовательно, все, кроме 3.
б) при
Если x = -5, то
Если х= 3, то
Значит,
Первообразная (F(x)) - это функция (а не точка), которая ищется интегрированием другой функции (f(x))
Объяснение:
Находим интеграл от (3x-2)^8, для этого преобразовываем дифференциал (dx). добавляем 1/3 * 3 и тройку заносим под знак дифференциала: d(3x), 1/3 остаётся за интегралом. Константу можно добавить "просто так", ведь производная простого числа - 0, и получаем d(3x-2). Далее интегрируем это выражение как одну переменную: интеграл от а равен а^2/2. здесь интеграл от а^8 = а^9/9. Получаем ответ, не забываем С