Пусть сторона квадрата равна . Тогда по условию, Теперь попробуем найти стороны треугольника PQD:
1) найти PD:
По теореме Пифагора
2) найти PQ и QD:
Проведем прямую проходящую через точку Q и параллельную BC, и отметим точки пересечения с квадратом ABCD как M и N где M∈AB, N∈CD и прямую проходящую через точку Q и параллельную AB, пересекающую квадрат в точках E и F где E∈BC, F∈AD.
Тогда из параллельности PQ||BC, FQ||CD и свойства пропорциональных отрезков получаем,
Следовательно из ,
Также из-за того, что AP<AM,
Заметим что, AMQF - прямоугольник, тогда
Теперь нам известны катеты прямоугольных треугольников PMQ и QFD, значит мы можем найти и их гипотенузы PQ и QD,
3) доказать что ∠PQD=90°:
Действительно,
Из обратной теоремы Пифагора следует что, ∠PQD - прямой угол.
4) доказать что ∠PQD - наибольший угол соответствующего треугольника:
Предположим обратное, допустим в треугольнике PQD есть угол больший 90°, но тогда сумма углов этого треугольника будет больше 180° - противоречие.
По итогу имеем то что, ∠PQD=90° - наибольший угол треугольника PQD.
ответ: 1 бригада -- 9 часов, 2 бригада -- 6 часов.
Объяснение:
"Две бригады, работая вместе, могут выполнить некоторое задание за 3 ч 36 мин.
Сколько времени потратит на выполнение этой задачи каждая бригада, работая отдельно, если известно, что
первой бригаде нужно для этого на 3 часа больше времени, чем второй."
***
Решение.
1 бригада тратит на 3 часа больше второй --- х+3 часов.
производительность равна 1/(х+3);
2 бригада тратит - х часов.
Производительность равна 1/х.
Совместная производительность 1/3,6.
1/(х+3) + 1/х = 1/3,6;
После преобразования, получаем:
3,6х+3,6х+10,8=х²+3х;
х² - 4,2х - 10,8=0;
По теореме Виета:
х1+х2=4,2; х1*х2=-10,8;
х1= 6; х2= - 1,8; - не соответствует условию задачи.
х1=6 часов -- тратит на работу 2 бригада.
6+3=9 часов --- тратит 1 бригада.
Проверим:
1/6 + 1/9 = (3+2)/18 = 5/18 - совместная производительность
1 : 5/18 = 18/5 = 3 3/5 = 3,6 часов. Всё верно!
90 градусов.
Объяснение:
Пусть сторона квадрата равна . Тогда по условию, Теперь попробуем найти стороны треугольника PQD:
1) найти PD:
По теореме Пифагора
2) найти PQ и QD:
Проведем прямую проходящую через точку Q и параллельную BC, и отметим точки пересечения с квадратом ABCD как M и N где M∈AB, N∈CD и прямую проходящую через точку Q и параллельную AB, пересекающую квадрат в точках E и F где E∈BC, F∈AD.
Тогда из параллельности PQ||BC, FQ||CD и свойства пропорциональных отрезков получаем,
Следовательно из ,
Также из-за того, что AP<AM,
Заметим что, AMQF - прямоугольник, тогда
Теперь нам известны катеты прямоугольных треугольников PMQ и QFD, значит мы можем найти и их гипотенузы PQ и QD,
3) доказать что ∠PQD=90°:
Действительно,
Из обратной теоремы Пифагора следует что, ∠PQD - прямой угол.
4) доказать что ∠PQD - наибольший угол соответствующего треугольника:
Предположим обратное, допустим в треугольнике PQD есть угол больший 90°, но тогда сумма углов этого треугольника будет больше 180° - противоречие.
По итогу имеем то что, ∠PQD=90° - наибольший угол треугольника PQD.