1. Если прямая с пересекает прямие a и b, то прямая с имеет две общие точки с плоскостью, значит она лежит в етой плоскости, так как через две точки можно построить только одну прямую.
2. Применяем теорему Фалесса
Прямие А1В1 и А2В2 паралельни, так как принадлежат паралельним плоскостям , которие пересекают плоскость АВС
3. Чтоби построить сечение необходимо на стороне ВАD построить прямую наралельную ВD и проходящую через точку М, пересечение с прямой АВ пусть будет точка К, аналогично проводим паралельную прямую на стороне ВСD и проходящую через N , в пересечении с СВ получим точку Р. Соединим МКРN получим необходимое сечение
Відповідь:
Пояснення:
1. Если прямая с пересекает прямие a и b, то прямая с имеет две общие точки с плоскостью, значит она лежит в етой плоскости, так как через две точки можно построить только одну прямую.
2. Применяем теорему Фалесса
Прямие А1В1 и А2В2 паралельни, так как принадлежат паралельним плоскостям , которие пересекают плоскость АВС
Поетому ети прямие отсекают пропорциональние отрезки АА1/А1А2= АВ1/В1В2=5/10=1/2
Поетому В1В2=3×2=6
АА2=10+5=15
АВ2=3+6=9
3. Чтоби построить сечение необходимо на стороне ВАD построить прямую наралельную ВD и проходящую через точку М, пересечение с прямой АВ пусть будет точка К, аналогично проводим паралельную прямую на стороне ВСD и проходящую через N , в пересечении с СВ получим точку Р. Соединим МКРN получим необходимое сечение