В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Mihael13
Mihael13
01.06.2020 01:59 •  Алгебра

Нужно решение логарифмического уравнения lg(x^2+12x+28)-lg(x+4)=0 !

Показать ответ
Ответ:
Kuzenka2003
Kuzenka2003
03.10.2020 09:52
ОДЗ:
x^2+12x+28>0
(x+14)(x+2)>0
x>-14 и х>-2 методом интервалов х>-2
x<-14 и x<-2 методом интервалов х<-14
x+4>0 откуда x>-4
и х не равно -4
ОДЗ получается: (-бесконечность;-14) и (-2;+бесконечность)

lg((x^2+12x+28)/(x+4))=0
(x^2+12x+28)/(x+4)=1
x^2+12x+28=x+4
x^2+11x+24=0
D=121-96=25
x1=(-11-5)/2=-8
x2=(-11+5)/2=-3

И оба корня не проходят по ОДЗ
Вывод: решений нет
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота