конденсатором называют совокупность двух проводников, имеющие одинаковые по модулю и противоположные по знаку заряды.
проводники у конденсатора называют обкладками конденсатора.
обкладки должны иметь такую форму и
быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально в ограниченной области пространства, между обкладками.
назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.
основной
характеристикой конденсатора является электрическая емкость (c). электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:
q – величина заряда на обкладке;
{\varphi }_1-{\varphi }_2 – разность потенциалов между обкладками.
электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. если пространство между обкладками одного конденсатора заполнено диэлектриком
с проницаемостью равной \varepsilon, а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (c) в \varepsilon раз больше, чем емкость воздушного конденсатора (c_0):
Если обе части уравнения неотрицательны, можно возвести в квадрат, новых корней при этом не возникнет. Заодно пользуемся тем, что |...|^2 = (...)^2: (x^2 + 5x - 4)^2 = (3x - 1)^2 (x^2 + 5x - 4)^2 - (3x - 1)^2 = 0
У первой скобки корни -3, 1 (легко угадать, пользуясь теоремой Виета). У второй скобки корни найдем, выделив полный квадрат: x^2 + 8x - 5 = 0 x^2 + 8x + 16 = 16 + 5 (x + 4)^2 = 21 x = -4 +- sqrt(21)
Нужны корни, которые не меньше 1/3. У первой скобки это 1, у второй - точно не -4 - sqrt(21) < 0 и возможно -4 + sqrt(21).
Сравним -4 + sqrt(21) и 1/3. Обозначим неизвестный значок за v и попереписываем: -4 + sqrt(21) v 1/3 sqrt(21) v 1/3 + 4 sqrt(21) v 13/3 3 sqrt(21) v 13 sqrt(183) v sqrt(169) - отсюда ясно, что v = '>', -4 + sqrt(21) > 1/3.
Получается, у уравнения есть два корня x = 1 и x = -4 + sqrt(21).
ответ. sqrt(21) - 3.
P.S. Можно было не сравнивать sqrt(21) - 4 и 1/3, а поступить иначе. Заметим, что график y = x^2 + 8x - 5 - квадратичная парабола, ветви направлены вверх, ось симметрии x = -4. Тогда если y(1/3) < 0, то больший корень будет больше 1/3.
формула электроемкости конденсатора
определение
конденсатором называют совокупность двух проводников, имеющие одинаковые по модулю и противоположные по знаку заряды.
проводники у конденсатора называют обкладками конденсатора.
обкладки должны иметь такую форму и
быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально в ограниченной области пространства, между обкладками.
назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.
основной
характеристикой конденсатора является электрическая емкость (c). электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:
\[c=\frac{q}{{\varphi }_1-{\varphi }_2}=\frac{q}{u} \qquad(1)\]
q – величина заряда на обкладке;
{\varphi }_1-{\varphi }_2 – разность потенциалов между обкладками.
электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. если пространство между обкладками одного конденсатора заполнено диэлектриком
с проницаемостью равной \varepsilon, а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (c) в \varepsilon раз больше, чем емкость воздушного конденсатора (c_0):
\[c=\varepsilon c_0 \qquad(2)\]
Если обе части уравнения неотрицательны, можно возвести в квадрат, новых корней при этом не возникнет. Заодно пользуемся тем, что |...|^2 = (...)^2:
(x^2 + 5x - 4)^2 = (3x - 1)^2
(x^2 + 5x - 4)^2 - (3x - 1)^2 = 0
Раскладываем по формуле разности квадратов:
(x^2 + 5x - 4 - 3x + 1)(x^2 + 5x - 4 + 3x - 1) = 0
(x^2 + 2x - 3)(x^2 + 8x - 5) = 0
У первой скобки корни -3, 1 (легко угадать, пользуясь теоремой Виета).
У второй скобки корни найдем, выделив полный квадрат:
x^2 + 8x - 5 = 0
x^2 + 8x + 16 = 16 + 5
(x + 4)^2 = 21
x = -4 +- sqrt(21)
Нужны корни, которые не меньше 1/3. У первой скобки это 1, у второй - точно не -4 - sqrt(21) < 0 и возможно -4 + sqrt(21).
Сравним -4 + sqrt(21) и 1/3. Обозначим неизвестный значок за v и попереписываем:
-4 + sqrt(21) v 1/3
sqrt(21) v 1/3 + 4
sqrt(21) v 13/3
3 sqrt(21) v 13
sqrt(183) v sqrt(169) - отсюда ясно, что v = '>', -4 + sqrt(21) > 1/3.
Получается, у уравнения есть два корня x = 1 и x = -4 + sqrt(21).
ответ. sqrt(21) - 3.
P.S. Можно было не сравнивать sqrt(21) - 4 и 1/3, а поступить иначе. Заметим, что график y = x^2 + 8x - 5 - квадратичная парабола, ветви направлены вверх, ось симметрии x = -4. Тогда если y(1/3) < 0, то больший корень будет больше 1/3.