16^5 -8^6=(2×8)^5 -8^6=(2×2^3)^5 -(2^3)^6=(2^4)^5 -(2^3)^6=2^20 -2^18=2^18 ×(2^2 -1)=2^18 ×(4-1)=3×2^18, где одно из производных кратно трем (3:3=1). Следовательно, ответ также будет кратным 3.
Заметив, что х=1 - корень уравнения можно преобразовать : (x-1)*(x^3+3x^2-13x -15) Теперь заметим, что х=-1 тоже корень. Преобразуем: (x-1)*(x+1)*(x^2+2x-15)=(x-1)*(x+1)*((x+1)^2-4*4)=(x+1)*(x-1)*(x-3)*(x+5) Понятно, что уравнение с противоположными корнями : (x^2-1)*(x^2-2x-15) Или : х^4-2x^3-16x^2+2x+15=0 - Это ответ. Решение можно было получить проще, если сразу заметить, что х=1 и х=-1 корни уравнения. Тогда выражение представимо в виде (х^2-1)*(x^2-cx-15) . Легко подобрать с=2. По теореме Виета остальные корни разных знаков и они поменяются знаками если вместо с взять (-с). Сделав эту замену получим искомое.
Объяснение:
1).
10a^5 b^3 -18a^3 b^7=2a^3 b^3 •(5а^2 -9b^4)
(х+5)(5а+1)-(х+5)(2а-8)=(х+5)(5а+1-2а+8)=(х+5)(3а+9)=3(х+5)(а+3)
3а-3b+ax-bx=3(a-b)+x(a-b)=(3+x)(a-b)
x^2 -2xy+x-xz+2yz-z=x(x-2y+1)-z(x-2y+1)=(x-z)(x-2y+1)
2).
12х-4х^2=0
4х(3-х)=0
4х=0
х1=0/4=0
3-х=0
х2=0+3=3
(х-9)(4х+3)-(х-9)(3х-1)=(х-9)(4х+3-3х+1)=(х-9)(х+4)
3).
16^5 -8^6=(2×8)^5 -8^6=(2×2^3)^5 -(2^3)^6=(2^4)^5 -(2^3)^6=2^20 -2^18=2^18 ×(2^2 -1)=2^18 ×(4-1)=3×2^18, где одно из производных кратно трем (3:3=1). Следовательно, ответ также будет кратным 3.
Преобразуем:
(x-1)*(x+1)*(x^2+2x-15)=(x-1)*(x+1)*((x+1)^2-4*4)=(x+1)*(x-1)*(x-3)*(x+5)
Понятно, что уравнение с противоположными корнями :
(x^2-1)*(x^2-2x-15)
Или :
х^4-2x^3-16x^2+2x+15=0 - Это ответ.
Решение можно было получить проще, если сразу заметить, что х=1 и х=-1 корни уравнения.
Тогда выражение представимо в виде (х^2-1)*(x^2-cx-15) . Легко подобрать с=2.
По теореме Виета остальные корни разных знаков и они поменяются знаками если вместо с взять (-с). Сделав эту замену получим искомое.